
CSS: A M U S T - H A V E T E C H N O L O G Y P. 7 2.52.5

DREAMWEAVERDREAMWEAVER
Visual Formatting

FIREWORKSFIREWORKS
Do It with Style

FREEHANDFREEHAND
The Object Panel

COLDFUSIONCOLDFUSION
Making Headlines

DIRECTORDIRECTOR
Talking to Sprites

DREAMWEAVERDREAMWEAVER
Visual Formatting

FIREWORKSFIREWORKS
Do It with Style

FREEHANDFREEHAND
The Object Panel

COLDFUSIONCOLDFUSION
Making Headlines

DIRECTORDIRECTOR
Talking to Sprites

volume 2 issue 5 www.mxdj.com

THE LEADING MAGAZINETHE LEADING MAGAZINE
FOR MACROMEDIA MXFOR MACROMEDIA MX
DEVELOPERS & DESIGNERSDEVELOPERS & DESIGNERS

FLASH
EXTENDING

http://www.gulfstream.com/

Reference to any specific commercial products, processes, or services, or the use of any trade, firm, or corporation name is for the information and convenience of the public, and does not constitute endorsement,
recommendation, or favoring by Gulfstream Aerospace Corporation or General Dynamics.
Copyright © 2004 Macromedia, Inc. and its licensors. All rights reserved. Macromedia, the Macromedia logo, and Dreamweaver are trademarks or registered trademarks of Macromedia, Inc. in the U.S. and other countries.
Other marks are the properties of their respective owners.

When your product delivers at the highest level, appearances count: the Gulfstream website.

Built with Dreamweaver. Which, in its latest update, is up to 70% faster. Hey, everyone likes to fly.

16

4 • MXDJ.COM 5 • 2004

12

24

38 A New Solution
for Flash

Remoting
Integrating Flash

clients with server-side
components

by joe orbman

Visual Formatting
The CSS transition made easier

by zoe gillenwater

Extending Flash
XML2UI and Flash dialog boxes

by guy watson

Do It with Style
A powerful time-saving tool

by charles e. brown

28 42

7
Why Use CSS?

The benefits offer the
best reason

by greg rewis

may 2004

Have It Your Way
Custom keyboard

shortcuts in
Dreamweaver

MX 2004
by justin kozuch

XML for Web
Designers

Leveraging
Macromedia support

by kevin ruse

60

72

MOA Tour
Macromedia Open

Architecture quirks,
clues, shortcuts, and

hints
by tab julius

Ending CPU
Hogging

Sleep that offers work
by alex zavatone

5 • 2004 MXDJ.COM • 5

The Object Panel
The key to functionality in

FreeHand MX
by ron rockwell

Making Headlines
CFMX: A Web services

example, Part 2
by richard gorremans

Talking to Sprites
Keeping tabs on Director

by james newton

645446

14 xile
Cartoon
by louis f. cuffari 74

vanguard
Dream Out Loud
by nino del padre

on the cover

ith Flash MX 2004’s new Extensibility JSAPI,

it’s now possible to provide cross-platform

dialog boxes in your Flash extensions. This

article is an in-depth exploration of of XML

dialog boxes, the XML2UI Engine that parses

and displays them, and XML2UI itself, an

XML-formatted language.

w

MXDJ.COM • 7

ince the launch of

Dreamweaver MX 2004, I’ve

had numerous opportunities

to demonstrate its new features and

power to both new and existing

Dreamweaver users. As with any product

demonstration, it doesn’t take long

before I’m singing the praises of

Dreamweaver MX 2004’s abilities to

design and render CSS, or Cascading

Style Sheets.

Recently, however, a novice user

asked a question, which, quite honestly,

startled me. The user simply asked, “Why

should I use CSS?” I realized at that

moment that while those of us who work

with HTML and CSS on a daily basis are

intimately familiar with the benefits,

many of you are not.

CSS Beginnings
The governing body of the Web, the

W3C, recommended the use of CSS in

December 1996 with the ratification of

the CSS Level 1 specification, which

described attributes for use in HTML

pages. These attributes replaced the tra-

ditional font tag and other “style” markup

such as color and margins. In May 1998,

the W3C ratified CSS Level 2, which intro-

duced positioning attributes. These

attributes replaced the rampant (and

incorrect) usage of the table tag to

design the presentation of page ele-

ments. The most recent revision to the

CSS specifications is CSS 2.1, which

refines some attributes and removes oth-

ers that had only limited, if any, usages in

current browsers.

Unfortunately, CSS has been slow in

reaching broad adoption. One of the key

reasons for this was the browsers, and, in

turn, the Web designers building sites for

these browsers. At the time of CSS ratifi-

cation, Netscape Navigator was still the

dominant browser, and its support for

CSS was basically nonexistent. Microsoft

added very limited support with version

3 of its browser, but most Web designers

at the time (this author included) were

still coding their pages with Netscape as

their reference platform.

Over the years, with each new ver-

sion, the browser makers have expanded

their support of CSS. Today, Internet

Explorer 6, Netscape Navigator 7, Mozilla,

Opera, and Safari all fully support CSS.

That’s not to say that our lives as Web

designers and developers are without

problems. While the above-mentioned

browsers support CSS Level 2, they do so

with varying degrees of compliance. In

some cases, certain attributes still give

you cause for frustration. In other words,

you still need to follow the age-old

mantra of “test, and test often.” However,

if you stick to core attributes of the CSS

specifications, your pages will render cor-

rectly.

But why did the W3C create the CSS

specification at all? What does it all mean

to me as I create HTML-based Web sites

and applications? In my opinion, you can

divide up the need for CSS and its result-

ing benefits into three main areas: flexi-

bility, rendering, and accessibility.

Flexibility
I’m sure that almost every Web

designer and developer has experienced

that moment of panic when, after metic-

ulously laying out a page – complete

with numerous nested tables – the client

requests a “small” change. This could be

something as simple as “can you move

that image a little to the left,” or as dra-

matic as “I’m not happy with those head-

ers, can you make their font larger – and

while you’re at it, how about changing

their color too?” If you’re dealing with a

limited number of pages, you can take a

deep breath and spend the better part of

an hour making those irritating changes.

But when you’re dealing with the larger

sites, which have become the norm, a

simple change is suddenly anything but

simple.

What causes the panic in these situa-

tions? The markup, which defines the

appearance of our pages, is actually part

Group Publisher Jeremy Geelan
Art Director Louis F. Cuffari

EDITORIAL BOARD
Dreamweaver Editor
Dave McFarland
Flash Editor
Jesse Warden
Fireworks Editor
Kleanthis Economou
FreeHand Editor
Louis F. Cuffari
Ron Rockwell
ColdFusion Editor
Robert Diamond

INTERNATIONAL ADVISORY BOARD
Jens Christian Brynildsen Norway,
David Hurrows UK, Joshua Davis USA,
Jon Gay USA, Craig Goodman USA,
Phillip Kerman USA, Danny Mavromatis USA,
Colin Moock Canada, Jesse Nieminen USA,
Gary Rosenzweig USA, John Tidwell USA

EDITORIAL
Executive Editors
Gail Schultz, 201 802-3043
gail@sys-con.com
Jamie Matusow, 201 802-3042
jamie@sys-con.com

Editors
Nancy Valentine, 201 802-3044
nancy@sys-con.com
Jean Cassidy, 201 802-3041
jean@sys-con.com
Jennifer Van Winckel, 201 802-3052
jennifer@sys-con.com

Technical Editors
James Newton • Sarge Sargent

To submit a proposal for an article, go to
http://grids.sys-con.com/proposal.

Subscriptions
E-mail: subscribe@sys-con.com
U.S. Toll Free: 888 303-5282
International: 201 802-3012
Fax: 201 782-9600
Cover Price U.S. $5.99
U.S. $29.99 (12 issues/1 year)
Canada/Mexico: $49.99/year
International: $59.99/year
Credit Card, U.S. Banks or Money Orders
Back Issues: $12/each

Editorial and Advertising Offices
Postmaster: Send all address changes to:
SYS-CON Media
135 Chestnut Ridge Rd.
Montvale, NJ 07645

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

List Rental Information
Kevin Collopy: 845 731-2684,
kevin.collopy@edithroman.com,
Frank Cipolla: 845 731-3832,
frank.cipolla@epostdirect.com

Promotional Reprints
Kristin Kuhnle, 201 802-3026
kristin@sys-con.com

Copyright © 2004
by SYS-CON Publications, Inc. All rights
reserved. No part of this publication may be
reproduced or transmitted in any form or by any
means, electronic or mechanical, including
photocopy or any information storage and
retrieval system, without written permission.

MX Developer’s Journal (ISSN#1546-2242)
is published monthly (12 times a year) by
SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645.

SYS-CON Media and SYS-CON Publications,
Inc., reserve the right to revise, republish, and
authorize its readers to use the articles submit-
ted for publication. MX and MX-based marks
are trademarks or registered trademarks of
Macromedia, in the United States and other
countries. SYS-CON Publications, Inc., is inde-
pendent of Macromedia. All brand and product
names used on these pages are trade names,
service marks or trademarks of their respective
companies.

d
re

a
m

w
e

ave
rs

The benefits offer the best reason
by greg rewis

Why Use CSS?

8 • MXDJ.COM

of the pages themselves. To see an illus-

tration, take any given page from one of

your sites and count the number of font

and table tags. If only you could remove

this markup from the flow, or code, of the

actual page – and, even better, if you

could externalize it –you could make the

changes in a centralized place. Sounds

like a job for CSS.

By designing your pages using a sin-

gle, or even multiple, external style

sheets, you can apply those changes to

your site by modifying the style sheet

and uploading the modified version.

Imagine how difficult it would be to

move your site navigation from the left

side of the page to the right in a tradi-

tional table-based layout. This would

take hours of repetitive and very tedious

work. If, however, you used the position-

ing attributes of CSS (more commonly

known as CSS-P) to design your pages, a

simple change to the “float” attribute in

the external style sheet would update

the page. There’s also an added benefit:

you’ve updated every page that uses that

style sheet on the site!

Rendering
Since broadband has become main-

stream, many developers have stopped

considering how much time it takes to

render a page in a browser. However, for

many of you it’s important to remember

that your target audiences still surf the

Web on dial-up connections. The tradi-

tional table-based layout is one of the

primary causes of slow-loading pages.

This happens because the browser, upon

receiving the page from the server, must

first examine and “understand” the com-

plex array of nested tables. It must first

locate the most deeply nested piece of

content and then meticulously work its

way back out of the code until it reaches

the uppermost container, the body tag.

Only after completing this journey can

the browser begin rendering the content

on the screen.

When you use CSS, the browser

begins the rendering process as soon as

it receives the content from the server

because there is little, if any, actual pre-

sentational markup in the page.

There is also a hidden rendering bene-

fit when using external style sheets. In the

traditional table-based approach, the

browsers must retrieve, analyze, and ren-

der each page individually. In other

words, the browser is working just as hard

at displaying the 30th page in your site as

it was when displaying the first page.

If, however, the site uses exter-

nal style sheets for its presenta-

tion, the first page prompts the

browser to cache the linked

style sheet files that the page

uses. This means that all of the

subsequent pages in the site

using those style sheets will load

even faster, since the browser

has already cached the style

sheets.

The final rendering benefit

reminds me of the movie

d
re

a
m

w
e

av
e

r SYS-CON MEDIA
President & CEO
Fuat Kircaali, 201 802-3001
fuat@sys-con.com
Vice President, Business Development
Grisha Davida, 201 802-3004
grisha@sys-con.com
Group Publisher
Jeremy Geelan, 201 802-3040
jeremy@sys-con.com

ADVERTISING
Senior Vice President, Sales & Marketing
Carmen Gonzalez, 201 802-3021
carmen@sys-con.com
Vice President, Sales & Marketing
Miles Silverman , 201 802-3029
miles@sys-con.com
Advertising Sales Director
Robyn Forma, 201 802-3022
robyn@sys-con.com
Director, Sales & Marketing
Megan Mussa, 201 802-3023
megan@sys-con.com
Associate Sales Managers
Kristin Kuhnle, 201 802-3025
kristin@sys-con.com
Beth Jones, 201 802-3028
beth@sys-con.com

PRODUCTION
Production Consultant
Jim Morgan, 201 802-3033
jim@sys-con.com
Lead Designer
Louis F. Cuffari, 201 802-3035
louis@sys-con.com
Art Director
Alex Botero, 201 802-3031
alex@sys-con.com
Associate Art Director
Richard Silverberg, 201 802-3036
richards@sys-con.com
Assistant Art Director
Tami Beatty, 201 802-3038
tami@sys-con.com

SYS-CON.COM
Vice President, Information Systems
Robert Diamond, 201 802-3051
robert@sys-con.com
Web Designers
Stephen Kilmurray, 201 802-3053
stephen@sys-con.com
Christopher Croce, 201 802-3054
chris@sys-con.com
Online Editor
Lin Goetz, 201 802-3045
lin@sys-con.com

ACCOUNTING
Accounts Receivable
Charlotte Lopez, 201 802-3062
charlotte@sys-con.com
Financial Analyst
Joan LaRose, 201 802-3081
joan@sys-con.com
Accounts Payable
Betty White, 201 802-3002
betty@sys-con.com

EVENTS
President, SYS-CON Events
Grisha Davida, 201 802-3004
grisha@sys-con.com
Conference Manager
Lin Goetz, 201 802-3045
lin@sys-con.com
National Sales Manager
Sean Raman 201-802-3069
raman@sys-con.com

CUSTOMER RELATIONS
Circulation Service Coordinators
Shelia Dickerson, 201 802-3082
shelia@sys-con.com
Edna Earle Russell, 201 802-3081
edna@sys-con.com
Linda Lipton, 201 802-3012
linda@sys-con.com
JDJ Store Manager
Brundila Staropoli, 201 802-3000
bruni@sys-con.com

5 • 2004

MXDJ
Section Editors

Dreamweaver
Dave McFarland

Author of Dreamweaver MX 2004: The Missing

Manual, Dave can be relied upon to bring

Dreamweaver MX to life for MXDJ readers with

clarity, authority, and good humor.

Flash
Jesse Warden

A multimedia engineer and Flash developer,

Jesse maintains a Flash blog at www.jesse

warden.com and says, referring to the MX prod-

uct range, that "Things are changing, opportunity

is on the frontier, a paradigm shift is occurring for

Web design, Web applications, et al."

Fireworks
Kleanthis Economou

A Web developer/software engineer since 1995,

now specializing in .NET Framework solutions,

Kleanthis is a contributing author of various

Fireworks publications and is the technical editor

of the Fireworks MX Bible. As an extension

developer, he contributed two extensions to the

latest release of Fireworks.

FreeHand
Louis F. Cuffari

Cofounder and art director of Insomnia Creations

(www.insomniacreations.com), Louis has spent

most of his life as a studio artist, including medi-

ums from charcoal portraits to oil/acrylic on can-

vas. In addition to studio art, he has been

involved in several motion picture projects in the

facility of directing, screenwriting, and art direc-

tion. Louis’s creative works expand extensively

into graphic design, and he has expertise in both

Web and print media. He is deputy art director

for SYS-CON Media and the designer

of MX Developer’s Journal.

Ron Rockwell
Illustrator, designer, author, and Team

Macromedia member, Ron Rockwell lives and

works with his wife, Yvonne, in the Pocono

Mountains of Pennsylvania. Ron is MXDJ’s

FreeHand editor and the author of FreeHand 10

f/x & Design, and coauthor of Studio MX Bible

and the Digital Photography Bible. He has Web

sites at www.nidus-corp.com and

www.brainstormer.org.

ColdFusion
Robert Diamond

Vice president of information systems for

SYS-CON Media and editor-in-chief of

ColdFusion Developer’s Journal, Robert was

named one of the "Top thirty magazine industry

executives under the age of 30" in Folio maga-

zine’s November 2000 issue. He holds a BS

degree in information management and technol-

ogy from the School of Information Studies at

Syracuse University. www.robertdiamond.com

10 • MXDJ.COM

Amadeus. In the movie, Mozart asks the

emperor what he thought of one of his

operas. The emperor responds that it

was good, but tedious. When pressed

by Mozart, the emperor explains that

the problem was simply that there were

“too many notes.” With Web design, this

can also be a problem – the notes are

the actual HTML code. The more code

there is, the longer it takes the browser

to understand and make sense of the

page.

When you implement CSS in your

designs, you decrease the amount of

code the client needs to download.

Simply removing all of the font tags from

some pages can minimize the amount of

code dramatically. If you move to com-

pletely CSS-P designs, in many cases you

can minimize the amount of code by

50% or more! Less code equals faster-

loading pages.

Accessibility
I hear a lot about accessibility these

days. Most developers know that they

should be thinking about building

more accessible sites, but to a large

degree only those developers who

build sites for government or educa-

tional institutions have been forced

into actually doing it. When thinking

about accessibility, a majority of devel-

opers assume this means that they sim-

ply need to add things like alt attrib-

utes to their images. But there is actual-

ly much more to accessibility, and

using CSS can make it easier for you to

build accessible sites.

One of the primary issues of accessi-

bility – and one where CSS can really

make a difference – is in how an assistive

technology such as a screen reader

“reads” a page. In the traditional table-

based world, a screen reader faces an

incredible challenge in deciding how to

read a page. Think about how confusing

it must be for a screen reader as it

encounters a deeply nested table –

should it read the content, or skip over it?

And if it skips over it, how does it get

back to the content later?

As you hit a page, you can quickly

spot the content that interests you and

ignore the navigation or other content at

the top of the page. Visually impaired

people don’t have this luxury. They must

wait for the screen reader to parse

through all of the extraneous information

between the top of the page and the

content they are really interested in.

Of course, there are techniques to

make the screen reader skip the naviga-

tion, but these usually require adding

links to images in your navigation bar or

other content. While these techniques

work, they can also be confusing, and

sighted visitors can see them as well.

Using CSS, you can define completely

invisible elements on the page – ele-

ments that are invisible to other site visi-

tors and your mouse. The screen reader

can use these elements to navigate

quickly and effectively through the docu-

ment.

With CSS and its lack of presentation-

al markup, the only thing that a screen

reader encounters is actual content.

Additionally, as you design using CSS-P,

you begin to concentrate on the actual

“flow” of content and consider its logical

order on the page.

As you’ve been reading this article

you followed the “flow” of information.

But in that nested table example, this

paragraph could just as easily have been

in the upper right-hand corner of the

page. In that case, the screen reader

would have no way of knowing that it

should wait until the end of the article to

read it.

Using CSS-P, the browser could dis-

play this paragraph in the upper right

corner of the page, but its position in the

actual text or flow of the document

would still be right here where you are

seeing it. This makes for a much better,

more accessible experience.

• • •
There you have it. I hope I’ve

explained some of the unique benefits of

using CSS in your Web endeavors.

Obviously, there’s a lot to learn.

Greg Rewis is chief Web technologies

evangelist at Macromedia. It is Greg's

responsibility to be a public spokesper-

son for the Macromedia Web publish-

ing suite of software and Web applica-

tion development servers – as well as

to represent the company’s customers

in an advocate's role on the product

development teams.

grewis@macromedia.com

dreamweaver

12 • MXDJ.COM 5 • 2004

hile dialog boxes and pull-

down menus are one way

to insert HTML, all that

extra mousing around takes time. After

the tenth time you choose Insert >

Image Objects > Rollover Image, your

aching hand will need some relief and

you’ll be wondering if there’s a faster way

to get your work done. Fortunately, the

customizable nature of Dreamweaver

makes most commands just a key tap

away.

What Are Shortcuts?
Shortcuts are an easy way to access

menu functions without having to use

your mouse. They can be used to perform

simple tasks such as opening or saving a

file, or more complex tasks such as mov-

ing or copying files from one location to

another.

Why are shortcuts so important? Well,

there are a few reasons. First, from an

ease-of-use standpoint, you don’t need

to access a menu item (or more than one

menu item) to use that feature, which

makes the keyboard shortcut concept a

timesaver. From an accessibility stand-

point, computer users who have mobility

problems and therefore cannot use a

mouse effectively, benefit because less

movement is required to use a keyboard

shortcut than to use a mouse to perform

the same task.

In Macromedia Dreamweaver MX

2004, there are 199 shortcuts that can be

used to accomplish almost every task

imaginable, from the obvious – like creat-

ing a new file (Ctrl+N on the Windows

platform, Cmd+N on the Macintosh plat-

form) – to the shortcut used to access the

Dreamweaver Help Topics (F1 on both

the Windows and Macintosh platforms).

However, you will notice over time that

not every menu item in Dreamweaver

2004 has a shortcut assigned to it.

In this article, you’ll learn how to cre-

ate your own shortcuts, how to share

your finished shortcut set with other Web

developers, and where to find useful

shortcut resources.

Setting Everything Up
Fire up Dreamweaver MX 2004 and

select Edit (Alt + E) > Keyboard Shortcuts

(Dreamweaver > Keyboard Shortcuts... for

Macs). This will launch the Keyboard

Shortcuts dialog box, which might take a

minute or two depending on the speed

of your computer and other variables.

The data being loaded comes from the

menus.xml file located in the C:\Program

Files\Macromedia\Dreamweaver MX

2004\Configuration\Menus directory and

the four XML files located in the

C:\Program Files\Macromedia\

Dreamweaver MX 2004\Configuration\

Menus\Custom Sets directory. (On the

Mac these folders are located in

Library/Application Support/

Dreamweaver MX 2004/Configuration

folder.) I say four because that’s the

number of default keyboard shortcuts

sets that Dreamweaver MX 2004 will

install.

Once the Keyboard Shortcuts dialog

box has opened, you will see something

very similar to Image I.

Since Dreamweaver MX 2004 will not

allow you to edit the Macromedia

Standard keyboard shortcut set through

the Keyboard Shortcuts dialog box, the

first thing we need to do is create a dupli-

cate shortcut set.

Click on the “Duplicate set” button

(see Image II), and type a name for the

new shortcut set in the Dialog Box. You

can type in any name for the set as long

as it is fewer than 27 characters. Use any

punctuation marks that you like, such as

commas or exclamation marks. Click the

OK button and select the name of the

new keyboard shortcut set from the

Current Set drop-down menu. A dialog

box (see Image III) will tell you that you

are changing keyboard shortcut sets.

Click on the OK button to close the dia-

log box.

TTiipp:: The XML file for your new keyboard

shortcut set is not stored in its regular

location. Instead, it is stored in the

C:\Documents and Settings\username\

Application Data\Macromedia\

Dreamweaver MX 2004\Configuration\

Menus\Custom Sets directory. Be sure

to replace username in this directory

path with your user name. On a Mac this

is stored in your home folder in the

Library/ApplicationSupport/

Macromedia/Dreamweaver MX

2004/Configuration/Menus/Custom

Sets folder.

commands

Have It Your Way

Custom keyboard shortcuts in Dreamweaver MX 2004

by justin kozuch

w

im
a

g
e

 I

Taking a Shortcut
In the “Commands” drop-down menu,

you will see six options: Menu commands,

Site panel, Code editing, Document edit-

ing, Site window, and Snippets (on a Mac

there are just four options: Menu com-

mands, Code editing, Document editing,

and Snippets). Select “Menu commands”

from the drop-down menu, and in the

text box below you’ll see a list of all the

menus in Dreamweaver MX 2004. Next to

the name of the menu, you’ll see a plus

sign. This indicates the presence of an

expandable list. Go ahead and click the +

sign next to the word “File”. What we are

going to do is assign a shortcut to the

“Save All” menu item. Select the “Save All”

item and then click the + sign next to the

word “Shortcuts”. Place your cursor in the

“Press key” text field and press the follow-

ing keyboard combination: “Ctrl+Shift+A”.

TTiipp:: Depending on the Current set you

have selected, the shortcuts for this set

are loaded from the related XML file. For

instance, if you have loaded the

Macromedia Standard shortcut set, the

shortcuts are read from the

“Macromedia Standard.xml” file in the

C:\Program Files\Macromedia\

Dreamweaver MX 2004\Configuration\

Menus\Custom Sets directory.

If you open this file in Notepad or

SimpleText, you will see something simi-

lar to:

<SHORTCUTSET name="Macromedia

Standard" type="factory">

<SHORTCUT ID="DWMenu_File_New"

keys="Cmd+N"/>

The first line denotes the name of the

Shortcut set (in this case, “Macromedia

Standard”) and the type, which in this

case is “factory”, which means that this

is the default set that Dreamweaver MX

2004 uses.

The second line denotes the Menu ID

(which in this case is,

“DWMenu_File_New”), which tells

Dreamweaver MX 2004 where this

menu item is located. In this case, the

menu item is located in the “File” menu

and the menu item is called “New”. The

keys attribute assigns a keyboard combi-

nation value that, when pressed, launch-

es the New File dialog box.

If you enter a keyboard shortcut that

is already in use, Dreamweaver MX 2004

will tell you via a warning that shows up

underneath the text field (Image IV).

Since “Ctrl+Shift+A” is being used to

insert a column in a table, we need to

choose another one. Place your cursor in

the text field and enter

“Alt+Ctrl+Shift+S”; then click on the

“Change” button. Your new keyboard

shortcut will show up in the text box

listing all the keyboard shortcuts, and in

the detail box below. If you want to

delete the shortcut you just created,

simply select the shortcut from the

detail box and click on the – sign to

delete it.

If you write a lot of your own code,

you’re probably familiar with

Dreamweaver’s Snippets feature, a tool

for adding commonly used code such as

database connection strings, or frequent-

ly used copyright notices, with the click

of a button. MX 2004 now lets you assign

keyboard shortcuts to your favorite snip-

pets.

Sharing Your Shortcuts
Now that you’ve mastered the art of

creating a shortcut set, you can actually

share the set you just created with other

people, like a development team or an IT

department.

The location of your newly created

custom keyboard shortcut set will differ

depending on the operating system you

are using:

• Windows XP/XP Pro: C:\Documents

and Settings\username\Application

5 • 2004 MXDJ.COM • 13

“Shortcuts are an easy way to
access menu functions without

having to use your mouse”

image II

image III

im
a

g
e

 IV

14 • MXDJ.COM 5 • 2004

xile written & illustrated by louis f. cuffari 6

Data\Macromedia\Dreamweaver MX

2004\Configuration\Menus\Custom

Sets

• Macintosh OS X: Hard Drive:Users:user-

name:Library:Application Support:

Applications:Macromedia

Dreamweaver MX

2004:Configuration:Custom Sets

The file of your keyboard shortcut set

will be identical to the name you just

gave your keyboard shortcut set. To share

the keyboard shortcut set you have just

created, simply navigate to the corre-

sponding folder above and copy the XML

file and paste it into the corresponding

directory on the machine you would like

to share the custom keyboard shortcut

set with. Once you restart Dreamweaver

MX 2004, go to Edit (Alt + E) > Keyboard

Shortcuts (Dreamweaver > Keyboard

Shortcuts... for Macs), click on the

“Current set” drop-down menu, and

select the name of the keyboard shortcut

set. Dreamweaver MX 2004 will load the

custom keyboard shortcut set.

You can also create a table of con-

tents of sorts for your keyboard short-

cuts. Open the Keyboard Shortcuts dialog

box using Edit (Alt + E) > Keyboard

Shortcuts (Dreamweaver > Keyboard

Shortcuts... for Macs), and click on the

“Export set as HTML” button (it’s the third

button from the left). Specify a location

to save the HTML file to, enter a filename

in the “Filename” text field, and click the

OK button. You can print this out, or dis-

tribute it with the custom keyboard

shortcut set.

Conclusion
Using the Keyboard Shortcuts dialog

box is just one of the many ways you can

extend the use of Dreamweaver MX 2004.

No longer will you have to search

through the menus looking for that elu-

sive menu item. By assigning a shortcut

to one or more menu items that you use

often, you are cutting down on your

development time and improving your

workflow.

If you would like to download a list of

the keyboard shortcut sets that come

with Dreamweaver MX 2004, you can

download the Dreamweaver MX 2004

Quick Reference Guide from www.macro

media.com/support/documentation/en/

dreamweaver/index.html

In addition, Danilo Celic of

Community MX has written a

Dreamweaver MX/MX 2004 extension

that will automatically place the exten-

sion in the proper place on your hard

drive depending on the operating system

you are using. You can download it from

www.communitymx.com/abstract.cfm?ci

d=7EF02

Justin Kozuch is a writer, Web develop-

er, and Team Macromedia member who

takes pride in helping other

Dreamweaver users. His work is pub-

lished weekly on CommunityMX.com,

the home of the MX Community. He’s

also the founder of Dreaming in TO

(www.dreaminginto.com), a Macromedia

Dreamweaver User Group located in

Toronto, ON. A dynamic “junkie”,

Justin’s passion lies in PHP/mySQL,

organic design, and breadcrumb naviga-

tion. justin@dreaminginto.com

“...there are 199 shortcuts that can
be used to accomplish almost

every task imaginable...”

Visual
Formatting

16 • MXDJ.COM 5 • 2004

by zoe gillenwater

Support for cascading style sheets, or
CSS, has been present in Dreamweaver
for many years; you may have taken
advantage of it as just another software
feature without really knowing how to
utilize it fully, efficiently, and correctly.
This article will introduce you to some
general guidelines to follow while setting
up and working with CSS-based Web
pages so you can achieve more consistent

rendering cross-browser. It assumes
you know what CSS is, have some

idea of its syntax and rules,
and are eager to take

advantage of its
benefits, but is

aimed at the
Web designer
who has not
yet taken the
leap to using
it as their
primary
layout and
visual

formatting
method.

5 • 2004 MXDJ.COM • 17

18 • MXDJ.COM 5 • 2004

Choosing a Doctype and
Rendering Mode

To assure that your CSS is rendered in

a reliable way, you’ll need to include a

document type declaration, or doctype,

on your pages. A doctype tells the brows-

er which version of (X)HTML you are

using and usually appears on the first line

of your document. Here’s an example of

the default doctype Dreamweaver MX

2004 uses when you create a new blank

HTML page:

<!DOCTYPE HTML PUBLIC

"-//W3C//DTD HTML 4.01

Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd"

>

This doctype is complete because it

contains both the public identifier (the

part that states it is HTML 4.01

Transitional) and the system identifier

(the URL to the document type defini-

tion, or DTD). Doctypes can also be writ-

ten without the system identifier and still

be valid, but you’ll usually want to work

with complete doctypes because of the

impact this has on the way your page

appears in browsers.

Your doctype determines whether

your page displays in a browser’s “quirks

rendering mode” or in its “standards ren-

dering mode.” In quirks, a browser will try

to handle sloppy authoring and will emu-

late the quirks and bugs of browsers of

the mid- to late ‘90s. In standards, the

browser will try to follow the World Wide

Web Consortium’s (W3C) current recom-

mendations, even if the results are unex-

pected.

In general, the following doctypes

will cause your page to be rendered in

quirks mode:

• No doctype

• HTML 3.2 or earlier

• HTML 4.0 Transitional or Frameset

• HTML 4.01 Transitional or Frameset

without URL

The following doctypes will cause

your page to be rendered in standards

mode:

• All strict doctypes

• All XHTML doctypes

• HTML 4.01 Transitional and Frameset

with URL

There are a couple of exceptions, so

you may want to check the major

browsers’ sites to verify the rendering

mode for your chosen doctype.

One caveat: complete HTML 4.01

Transitional and Frameset doctypes, as

well as any XHTML Transitional and

Frameset doctypes, actually put Mozilla

into its proprietary “almost standards

mode.” Almost standards is the same as

standards except in the way that images

in table cells and divs are rendered – in

standards, images sit on the baseline of a

box (where text would sit), while in

almost standards they fill the entire table

cell or div. Almost standards is a good

choice for old-fashioned table layouts of

sliced images.

Also note that an XML prologue (or

anything, for that matter, even an empty

comment) preceding an XHTML doctype

will throw IE6 and Opera 7.0x into quirks

mode. Dreamweaver MX inserted this

prologue in XHTML files, but MX 2004

does not. Since it can be omitted without

harm, it’s recommended you just remove

it if you want to stay in standards.

How do you know which doctype to

choose? XHTML is not a new standard

intended to replace HTML; basically it is a

more precise version of HTML that is

intended to make it easier to bridge over

to XML in the future. If you are creating a

static site, you probably don’t need to

worry about XHTML and can use HTML

4.01 without feeling a tad bit guilty.

What about the difference between

Strict and Transitional? Strict gives you

the cleanest code, the most forward com-

patibility, and the best separation

between content and presentation

because it does not allow many of the

presentational tags and attributes that

Transitional does. You don’t need these

deprecated tags any more – you can use

CSS to accomplish most of the things

they were used for – but if you’re working

with a client who insists you use some of

the old tricks for the old browsers, or if

you’re just revising existing pages, it may

be better to stick with Transitional for

now. Here are a few of the elements and

attributes you can’t use in Strict:

• Center tag (use CSS instead)

• Font tag (use CSS instead)

• Target attribute on links (opening new

windows is considered a usability no-

no)

• bgcolor attribute (use CSS instead)

• Link, alink, and vlink attributes (use

CSS instead)

No matter which version of (X)HTML

you choose, I recommend picking a doc-

type that keeps you in standards mode.

Standards mode usually results in a high-

er degree of cross-browser consistency

and gets you accustomed to current ren-

dering models so you can get in the habit

of coding to the standards instead of old

browser quirks. In addition, many CSS

hacks depend on you using standards

mode. For instance, many of the hacks

designed to work around the incorrect

box model in Windows Internet Explorer

(IE) 5.x do not target IE6, because IE6 gets

the box model right when it is in stan-

dards. However, if your page was in

quirks, IE6 would have a box model prob-

lem, and since the hacks do not target

IE6, it would not be fixed.

Dreamweaver automatically inserts a

complete HTML 4.01 Transitional doctype

on each new page, so you don’t have to

worry about rendering in standards. But

what if you want to use HTML Strict, not

Transitional, by default? Luckily, you can

easily edit the default Dreamweaver

HTML template. Locate the default tem-

plate in the Dreamweaver Configuration

folder: Configuration\Document

Types\NewDocuments\Default.html. The

configuration folder is located in

C:\Program\Files\Macromedia\Dreamwea

ver MX 2004\ (Win) or Library/Application

Support/Macromedia/Dreamweaver MX

2004/ (Mac). Be sure to make a backup of

the file (just in case). Open it in

Dreamweaver and view the code (see

Image I). Change the doctype to:

<!DOCTYPE HTML PUBLIC

"-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd

">

Once you save the page, all new

pages will include the doctype you

entered. You may want to edit some of

the other default pages as well, such as

the Dreamweaver Template document

(Default.dwt), to include the doctype that

you want.

If you choose to use XHTML to build

your pages, it’s easy: from the New

Document dialog box, select HTML and

check the “Make document XHTML com-

pliant” box at the lower right before click-

ing Create (see Image II). This will create a

page with a complete XHTML Transitional

doctype already inserted (see Image III).

MX 2004 leaves out the XML prologue by

default, so your pages should render in

standards mode cross-browser.

Unfortunately, there is no XHTML tem-

plate for you to edit like there is for

HTML, so if you would rather use XHTML

Strict instead of Transitional, you’re going

to have to make that change by hand on

each page (or use Find and Replace).

Setting Standard Rules
There are some rules that you will use

over and over again in your CSS files for

every site you work on. Just as you can

modify the HTML template Dreamweaver

uses, you can also modify its CSS tem-

plate to include your standard rules.

Open Default.css from the New-

Documents folder (full path above) and

edit away! Any changes you make and

save will show up every time you create a

blank CSS document from within

Dreamweaver.

Here are some suggestions for rules

you may want to add to your default

style sheet:

body {

margin: 0;

padding: 0;

}

If you want to get rid of the default

page margin on your page, remember

that you need to zero out both margin

and padding, since Opera uses padding

rather than margin to add the extra

space.

body {

font-face: Arial, Helvetica, sans-

serif;

}

The specific fonts listed above are just

examples, but the idea is to include your

font declaration on the body. This way

you can define a default font for text so

you don’t needlessly repeat it across sev-

eral tags such as div, p, and other text-

related tags that can simply inherit font

properties from the body.

body {

font-size: 100.01%;

}

If you plan on using a relative meas-

urement for text – such as ems or per-

centages – you’ll need to use this little

trick to avoid bugs in IE and Opera. IE has

a bug that displays em measurements

smaller than 1.0 as microscopic if the user

5 • 2004 MXDJ.COM • 19

im
a

g
e

 I
im

a
g

e
 I

I
im

a
g

e
 I

II
im

a
g

e
 I

V

has his or her text size set to “Smaller” or

“Smallest.” Setting a percentage font size

on the body fixes this bug as long as

you’re in standard mode.

If you want to set the base size to

100% to match users’ default settings (an

accessibility plus), keep in mind that

Opera has its own bug that computes

100% to be one pixel smaller than it

should be. This means that text can

become microscopic in Opera as well,

since all subsequent font sizes are based

off a base font that is too small. Using a

value other than 100%, even 100.01%,

fixes this bug in Opera.

table {

font-size: 1.0em;

}

This rule fixes a bug in Windows IE5.x

that prevents the font size from inherit-

ing into tables as it should. The value of

1.0 em tells the table to take its font size

from the surrounding content, which is

exactly what it’s supposed to do anyway,

so the rule doesn’t cause any damage in

standards-compliant browsers either.

div.clear {

clear: both;

height: 0;

margin: 0;

line-height: 0;

font-size: 1px;

}

If you use floats to lay out divs, you

are going to need a clearing element at

some point to hold things together.

When you float an object, you remove it

from the flow of the document, so it does

not affect other block elements, only

inline content. This means that the float’s

parent element will not expand to con-

tain the float, as you might expect. To

force the parent to contain the float,

insert a clearing element within the par-

ent but after the float. The parent will

have to expand down to hold the cleared

element, containing the float in the

process.

Although a simple <br style=”clear:

both”> will do the trick, you often want

your clearing element to take up no

space on screen, as if it wasn’t even there.

The rules for div.clear above do a good

job of eliminating the space that the div

would normally take up, providing an

easy way to contain your floats seamless-

ly. In your HTML, just write <div

class=”clear”> </div>.

Hiding CSS from Old
Browsers

To save your sanity – and your client’s

cash – it’s best to focus on usability for all

browsers, rather than pixel-perfect cross-

browser visual consistency. At some

point, Ford decided to stop providing

support for its Model Ts, and at some

point it no longer makes sense for us to

spend exorbitant amounts of time opti-

mizing visual appearance in an outdated

browser with 1% market share. For most

sites, trying to make things look perfect

in version 4 browsers simply doesn’t pro-

vide good ROI.

Notice that I said “visual appearance”

– you of course want to make sure your

site is still useable regardless of the user’s

browser. However, complicated CSS can

actually hamper your site’s usability in

older browsers that can’t handle it.

Fortunately, you can hide CSS from these

browsers to assure that their users will be

able to access your site content without

complicated CSS markup, turning things

into a mess.

The most common and simplest way

20 • MXDJ.COM 5 • 2004

im
a

g
e

 V

Win
a year
of free

hosting*
*On Shared Hosting or the equivalent value
See http://edgewebhosting.net/cfdj for details

By the Numbers:

• 2 Rings or less, live support

• 100% Guarantee

• 99.998% Uptime

• 150 MBPS Fiber Connectivity

• 24 x 7 Emergency support

• 24 Hour free backup

When calling your web host for support you want answers, not an
annoying song stuck in your head from spending all day on hold. At
EdgeWebHosting.net, we'll answer your call in two rings or less. There's
no annoying on-hold music, no recorded messages or confusing menu
merry-go-rounds. And when you call, one of our qualified experts will have
the answers you're looking for. Not that you'll need to call us often since
our self-healing servers virtually eliminate the potential for problems and
automatically resolve most CF, IIS and ASP problems in 60 seconds or less
with no human interaction. Plus, our multi-user support system allows you
to track support requests for each of your engineers individually, lookup
server availability, receive a copy of all errors on your site in real time, and
even monitor intrusion attempts on your site in real time. For a new kind
of easy listening, talk to EdgeWebHosting.net

For answers call us at 1-866-EDGEWEB
3 3 4 3 9 3 2

www.edgewebhosting.net

What are you WAITING for?

Shared Hosting ¥ Managed Dedicated Servers ¥ Semi-Private Servers
ColdFusion ¥ SQL Server ¥ .NET ¥ Self-Healing Servers ¥ Value Priced

© 2003 Edge Web Hosting. All rights reserved. Edgewebhosting.net and Edge Web Hosting logos are trademarks of ACS Edgewebhosting.net. ColdFusion is a trademarke of Macromedia. ASP, SQL Server, .NET are registered trademarks of Microsoft Corp.

to do this is by including your external

style sheet using @import instead of the

link tag. From the Link External Style

Sheet dialog box, browse to your CSS

file, and select Add As Import (see Image

IV). Dreamweaver will insert the follow-

ing code into the head of your docu-

ment:

<style type="text/css">

<!--

@import url("styles.css");

-->

</style>

Netscape Navigator (NN) 4.x will not

be able to see style sheets called this way

and will be presented with plain text

pages. However, IE4, another old browser

with poor CSS support, will see these

styles. Get rid of the “url” part if you want

to hide it from IE4 as well as NN4.x:

<style type="text/css">

<!--

@import "styles.css";

-->

</style>

If you want to give these old browsers

at least limited styling that they can han-

dle, use the link tag to include a basic

style sheet and @import to include a

more advanced style sheet for modern

browsers:

<link href="styles-basic.css"

rel="stylesheet" type="text/css">

<style type="text/css">

<!--

@import "styles-advanced.css";

-->

</style>

The version 4 browsers will ignore the

imported style sheet and render the page

using the values in the linked one, allow-

ing you to more fully utilize the capabili-

ties of CSS for those browsers that can

handle it. If you do use this method,

though, remember that modern

browsers will read both style sheets, so if

you create specific rules in the basic style

sheet that you don’t want applied in the

advanced one, make sure you specifically

set them back to the correct values in the

imported sheet.

Using Print Style Sheets
In addition to separate style sheets

for older and newer browsers, CSS

allows you to set up a style sheet to for-

mat the printed version of your Web

page. Before CSS, providing a text-only

or printer-friendly version of your page

often meant creating a separate copy of

the content designed for a printer,

meaning more work for you and your

server. With CSS, you can use a single

HTML file and specify how the printed

page should appear, including which

items on your page should or should

not be printed, simply by linking to

another style sheet with a media type of

“print”:

22 • MXDJ.COM 5 • 2004

im
a

g
e

 V
I

5 • 2004 MXDJ.COM • 23

<link rel="stylesheet" type="text/css”

href="sheet.css" media="print">

Keep in mind that if you have not

specified a media type for your other

style sheets, they will default to

media=”all” and apply to both screen and

print. This means that you will need to

place your print style sheet after the

other style sheets in the head of your

document to make sure its rules take

precedence in the cascade on the printed

page. To avoid this issue, you can set your

other style sheets to media=”screen”, but

having the overlap is actually often desir-

able – it keeps you from having to

include rules you want both on screen

and in print in two separate places, so

that all your print style sheet has to con-

tain is rules that are specifically changed

for print.

Note that NN4.x only recognizes style

sheets with a media value of “screen,” or

no media value at all, so your print style

sheet is not going to work in that brows-

er.

Also note that there was a bug in the

original release of Dreamweaver MX 2004

that would render the print styles in the

design view if you used @import with the

media specification in the style tag,

rather than in the @import line, to

include the print style sheet. This bug

was fixed in the 7.0.1 patch released on

March 11, 2004, so be sure to download it

from Macromedia’s site.

Some things to include in your print

style sheet:

• Suppress printing of elements that are

only needed on screen, such as navi-

gational elements, by using “display:

none”.

• Set colors to black and white or other

colors that are easier to read on the

printed page. Keep in mind that most

browsers do not print background col-

ors by default, so if you have white text

on a dark background, you may want

to change the color of your text to

black in your print style sheet.

• You can further improve readability on

the printed page by changing to a serif

font and increasing line-height.

• Remember that not everyone will be

printing to a color printer, so make

sure any information you conveyed in

color (e.g., “completed items are

marked in red”) is conveyed in an addi-

tional manner, such as a font style

change or with the addition of a bor-

der.

• Remove fixed widths so that text can

flow to accommodate whatever size

paper the user is printing to. Convert

other units to measurements that

make more sense for print (such as

changing pixels to ems or inches).

• Although you may be tempted to

change your font sizes to points, leaving

them as ems improves your page’s acces-

sibility and works just as well in print.

• You may want to remove floats from

items and let them flow normally

down the page for more reliable print-

ing cross-browser. Older Gecko-based

browsers had a bug that cut off floats if

they could not fit on the current page,

instead of letting them flow to subse-

quent pages. Although this bug has

been fixed, visitors using NN6.x, for

example, will still have a problem.

When redefining rules in your print

style sheet, make sure you use the exact

same name that was used in your general

style sheet. If you refer to “div#navbar” in

your general style sheet, don’t refer to it

as just “#navbar” in the print style sheet,

even if those selectors mean the same

thing. Sometimes things will fail to be

successfully overridden without this nam-

ing consistency.

Validating Your Documents
As you build your pages, remember

to validate both the (X)HTML and CSS to

make sure you are writing things correct-

ly. A validator is a utility that checks

whether a document’s syntax conforms

to the official definition of its doctype.

Although validation is not an end to itself,

it is a useful means of ensuring your

pages are free from simple errors such as

typos or disallowed values, making it a

valuable first step in figuring out why

things aren’t working as you intended.

Valid code is more likely to render prop-

erly cross-browser and is more forward

compatible.

The W3C, which created the (X)HTML

and CSS specifications, offers online val-

idators at http://validator.w3.org/ for

(X)HTML (see Image V) and http://jig-

saw.w3.org/css-validator/ for CSS (see

Image VI).

You can also validate your page with-

in Dreamweaver by going to File > Check

Page > Validate Markup (or Validate as

XML if it’s an XHTML page). The Validation

tab of the Results panel either displays a

"No errors or warnings" message or lists

the syntax errors it found (see Image VII).

Double click on any of these errors to

highlight it in the code.

Moving Forward
Even with valid code, you’ll still run

into inconsistencies in various browsers

due to the host of bugs that still exist in

their rendering engines. However, follow-

ing the guidelines above will help you

avoid many of the cross-browser

headaches Web development inevitably

brings up, letting you more easily transi-

tion to using CSS throughout your sites

as the visual formatting method.

Zoe Gillenwater, a Web designer at the

University of North Carolina at Chapel

Hill, has a passion for standards-based

development. She also keeps busy with

graphic design and multimedia projects.

Zoe is an active participant in the css-

discuss community and is one of those

who believes CSS-based layout is

ready for prime time.

zoe@pixelsurge.com

im
a

g
e

 V
II

24 • MXDJ.COM 5 • 2004

o doubt, you have heard about

XML. XML is everywhere. For

Web designers, that can add to

the confusion. If something is every-

where, it’s nowhere. If only you heard

“XML is the new HTML,” then maybe you

could wrap your mind around it as a

markup language. But chances are,

you’ve heard much more than that about

XML.

You may have heard one or more of

the following:

• XHTML is based on XML.

• XML is a way of storing information.

• XML is part of Web services.

• XML is an object in Flash.

• XML is part of Flash remoting.

• Dreamweaver supports XML.

XML is all of this and more. Thus the

confusion for the average Web designer.

What is XML? What does it mean to me?

Where does it fit in my workflow? How

can I leverage Macromedia’s support of

XML? The goal of this article is to answer

these fundamental questions. Even if you

never create an XML file, chances are you

will be working with an XML file some-

time in the very near future.

What Is XML?
Very simply, XML is the eXtensible

Markup Language, a World Wide Web

Consortium Recommendation as of

February 1998. The first important aspect

of your understanding of XML is recog-

nizing that it is a meta-language. A meta-

language is simply a master language

used to create your own unique lan-

guage, thus there are no predefined tags.

For example the meta-language SGML

was used by Tim Berners-Lee to create

the Hypertext Markup Language (HTML).

XML has already been used to create lan-

guages such as the Wireless Markup

Language (WML) and the Voice Markup

Language (VML). As the author of an XML

file you create the tag names. When you

receive or author an XML file with custom

tag names, you are working with, or have

created, an XML application. This fact

alone is a significant one. It makes XML

fundamentally different from HTML. Code

I is an HTML snippet and Code II is a com-

plete XML file.

The HTML file contains information

about how the data (content) should be

displayed. For example, a table should be

rendered with a header row containing

the words “Recipe,”“Ingredients,” and

“Amount,” followed by a row with corre-

sponding columns that read: “Meatloaf,”

“Ground Beef,” and “1 Pound.”There is no

information in the markup that explains

what the data is. The XML file contains no

presentation or display information, but

only information about what the data in

the tags mean. Thus the nature of the

XML tag is to be both human-readable

and ultimately machine-readable. XML is

meant to be a self-describing document.

The XML file contains no presentation

information, so we can reuse it for many

purposes. This XML file can be made for

use in a Web page, a PDA, a cellphone, a

database, a proprietary application, etc.

Currently XML is being used to store

the content for Web sites and will there-

fore land in the hands of the Web design-

er at some point. Think of it as the new

ASCII text file for the Web and more. Web

designers may even be asked to translate

the current content of their Web sites to

XML, so that the data may be repur-

posed.

Dreamweaver and XML
Editing

Dreamweaver MX 2004 can be used

to author XML files. The procedure is very

straightforward. From the File menu,

choose New. Select the “General” tab at

the top of the “New Document” dialog

box. Choose “Basic Page” from the

Category section on the left and “XML”

from the “Basic Page” category on the

right, then click the “Create” button.

Dreamweaver creates a blank page in

Code View that begins with what is

known as the XML declaration:

<?xml version="1.0" encoding="iso-

8859-1"?>

This line of code is found at the top of

the XML document. It is known as a pro-

cessing instruction, and it simply

announces the page as being an XML file

written in version 1.0 of the language as

defined by the W3C. Because XML is

meant to support international coding

practices it is written in Unicode as

opposed to ASCII code. The default

encoding type used in Dreamweaver is

ISO-8859-1, which represents a character

set similar to ASCII known as the “Latin

Alphabet No. 1.” However, the Latin

Alphabet No. 1 (commonly known as ISO

Latin 1) characters also contain charac-

ters and letters commonly used in writing

the languages of Western Europe and

other cultures. ISO-8859 is a family of

character sets that extend ASCII, such as

ISO-8859-2, which represents the charac-

ters of central/eastern Europe. The dis-

cussion of character encoding is beyond

the scope of this article – the main point

is that should you find the encoding type

of your XML application unfit for a partic-

ular purpose, you may change it in

Dreamweaver. The most commonly

deployed encoding type is UTF-8, which

is a subset of ISO-10646. The ISO-10646 is

an international standard superset of

widely used national and international

characters. You may want to adjust your

preferences in Dreamweaver so that the

XML declaration writes the encoding

markup

XML for Web Designers

Leveraging Macromedia support

by kevin ruse

n

5 • 2004 MXDJ.COM • 25

type known as Unicode-8. To do this,

choose Edit ‡ Preferences from the main

menu. Select the “New Document” cate-

gory on the right. In the default encoding

field (unless the default encoding has

been changed, it should read the default

encoding type: Western European.) select

“Unicode(UTF-8)” and click “OK.” All newly

created XML files will now begin with the

following XML declaration:

<?xml version="1.0" encoding="utf-8"?>

Well-Formed XML
XML files must follow certain rules in

order to be considered well formed, and

all XML files must be well formed. These

rules ensure that the XML file is struc-

tured. Here again, we see a small but very

significant difference between XML and

HTML. For example, browsers that parse

HTML can understand the following:

Ham

Eggs

Milk

as well as:

<H1>My heading goes here</H2>

In the above code snippets we find a

 tag closed with an , an

tag in uppercase closed with an in

lowercase, and an <H1> closed with an

<H2>. XML requires far more structure,

thus, the snippets above would not be

considered well-formed.

All XML files must have a root ele-

ment. This is the element that contains all

the other elements. For example, the root

element of an HTML 1.0 Web page is

<HTML> because that is the tag that

opens and closes the document. Other

rules include the following: all opening

tags must have closing tags and they

must match precisely and that includes

case-sensitivity. Thus an opening

<Recipe> tag must be closed and cannot

be closed with </recipe> because XML is

case sensitive (our opening tag included

a capital R in recipe and the closing tag is

all lowercase). The rules for writing well-

formed XML include:

1. All XML Files must contain a root ele-

ment.

2. All start tags must have end tags.

3. All start tags and end tags must match.

4. When implementing rule two, remem-

ber XML is case-sensitive.

5. All tags must be properly nested.

6. All attributes’ values must be in quotes.

Dreamweaver will check your file for

well-formedness and will indicate your

errors using the “Results” panel. Select

the “Validation” tab at the top of the

“Results” panel. Press the Validate button

(the green, right-facing triangle on the

left side of the panel) and choose

“Validate Current Document.” If your XML

file is well-formed, the status bar in the

“Results” panel will read: “Complete.” If

your XML breaks a well-formedness rule,

the Results panel will display the line

with the error followed by a description

of the error (see Image I).

Valid XML
The minimum requirement when

working with XML files is that they be

well formed. This enforcement is what

makes the repurposing of XML files possi-

ble because all systems can expect to

receive the incoming XML file in a struc-

tured, predictable format.

In addition to structure, some systems

will require that specific tags be used in a

specific order and that the tags contain

specific information. Remember that XML

is a meta-language, which programmers

can use to create their own markup lan-

guages. One such language derived from

XML is the Wireless Markup Language

used in PDAs and cellphone browsers.

This is another XML language that

Dreamweaver MX 2004 supports and is

capable of writing. Being an XML applica-

tion, the Wireless Markup Language has

specific predefined tags that must be

used according to a structure defined by

the authors of the language. This struc-

ture is enforced with another digital file

that can be written in several languages,

although the most common are the DTD

and the schema. Both of these docu-

ments work the same way. They declare

the elements (or tag names), how often

they can be used and in what order, as

well as where in the document they are

to be used. DTD’s and schemas also

declare the other components of an XML

file such as attributes, processing instruc-

tions and entities. If your XML file does

not break any of the rules set forth in the

DTD or schema, your file is considered

valid. To use a DTD you attach the file to

your XML file with the following line of

code:

<!DOCTYPE Recipe SYSTEM "recipe.dtd">

where !DOCTYPE indicates the use of a

DTD with this XML file and “Recipe” indi-

cates the root element of the file. The

keyword “System” indicates that the DTD

file is proprietary in use and can be found

in the local network as opposed to

“Public,” which would indicate that the

DTD is for public use and can be found

on the Internet. Our recipe dtd might be

an XML application unique to our compa-

ny and thus a SYSTEM DTD, whereas the

Wireless Markup Language is a widely

used XML application and the DTD is

public and can be found on the Internet.

im
a

g
e

 I
im

a
g

e
 I

I

If you were using Dreamweaver to

write an XML application, you could

point to the DTD or schema file (by

way of the aforementioned line of

code) and have Dreamweaver check to

see if you are writing the code correct-

ly. Dreamweaver uses the “Results”

panel to indicate validity errors (see

Image II).

Dreamweaver MX 2004 supports the

opening and viewing of XML files as well

as the creation of XML files. In addition it

provides the means to check our XML

files to ensure they are both well-formed

and valid.

Using XML in Dreamweaver
Dreamweaver MX 2004 provides sev-

eral uses for XML. You can import XML

into predefined templates. You can export

the data from templates to XML and you

can access XML data through ColdFusion.

XML is also widely used in Flash MX 2004.

XML and Dreamweaver
Templates

Macromedia lets you import XML files

into Dreamweaver MX templates (.dwt

files). In addition, you can also export

data from a Dreamweaver MX template

to the XML format. The process is very

straightforward once you understand the

foundations that must be in place.

The first step is to indicate the name

and location of the .dwt file that you wish

to import your XML into. This is done

through the “template” attribute, which

points to the .dwt file. The template

attribute is placed in the root element of

your XML file as follows:

<recipe template="Example1.dwt">

To import an XML file into your

Dreamweaver template, you must name

your template’s editable regions with

names that match the tags in the XML

file. Thus, the recipe example would

require creating editable regions with the

names: recipe, name, ingredient, and

amount. There is one problem with the

structure of this XML file – Dreamweaver

does not understand XPath, which is a

language that identifies locations of ele-

ments within an XML file. Thus,

Dreamweaver will understand the loca-

tion of the root element and the children

of the root element only. Dreamweaver

cannot access nested tags such as the fol-

lowing snippet:

<ingredients>

<ingredient>Ground Beef

<amount measurement =

"pounds">1</amount>

</ingredient>

Dreamweaver cannot locate the nest-

ed <amount> tag or the nested <ingredi-

ent> tag because they are not children of

the root element. Therefore to import

XML into Dreamweaver your file structure

must match Code III.

In most cases your XML files will not

reflect this structure and you will need to

transform the XML to match. XSLT is a

stylesheet language that can transform

XML files into any other type of file and

can be used to transform the original XML

file in Code II into the XML file in Code III.

If your Web site is complete and uses

templates you can also export a tem-

plates data to an XML file. Dreamweaver

will structure the XML file as in Code III.

Using XML in ColdFusion
Dreamweaver MX 2004 can create

dynamic sites using server-side technolo-

gies such as ASP, JSP, and ColdFusion to

connect to data sources such as Microsoft

Access, Oracle, or any ODBC-compliant

data. ColdFusion can also access data in an

XML file, including the elements, attrib-

utes, and the data they contain. You must

work in Code View in order to write the

ColdFusion Markup that loads, reads, and

parses the XML file. Following that code

you simply output the XML to the browser

using the ColdFusion <cfoutput> tag.

Loading, Reading, and
Parsing XML with
ColdFusion

The code to load an XML file (includ-

ing the first line comment):

c
o

d
e

 I
c

o
d

e
 I

I
c

o
d

e
 I

II

26 • MXDJ.COM 5 • 2004

<table>

<tr>

<th>Recipe</th>

<th>Ingredients</th>

<th>Amount</th>

</tr>

<tr>

<td>Meatloaf</td>

<td>Ground Beef</td>

<td>1 Pound</td>

<?xml version="1.0">

<recipe>

<name>Meatloaf </name>

<ingredients>

<ingredient>Ground Beef

<amount measurement = "pounds">1</amount>

</ingredient>

<ingredient>Onion

<amount measurement = "quantity">2</amount>

</ingredient>

</ingredients>

</recipe>

Code III

<?xml version="1.0">

<recipe>

<name>Meatloaf </name>

<ingredient1>Ground Beef</ingredient1>

<amount1 measurement = "pounds">1</amount1>

<ingredient2>Onion</ingredient2>

<amount2 measurement = "quantity">2</amount2>

</recipe>

5 • 2004 MXDJ.COM • 27

<!-- Load the XML File -->

<CFSET MyXmlFile =

ExpandPath("FileName.xml")>

Simply use the <CFSET> tag to set a

variable named MyXmlFile which is set

using the ExpandPath() method to

return the full path to the XML file sup-

plied as the argument

(“FileName.xml”).

The code to read an XML file (includ-

ing the first line comment):

<!-- Read the XML File -->

<CFFILE ACTION="READ"

FILE="#MyXmlFile#"

VARIABLE="MyXmlCode">

The <CFFILE> tag manages interactions

with the server and includes the attrib-

utes: ACTION set to read a text file on the

server; FILE set to the name of the file to

read, which in this case is the file indicat-

ed in the variable MyXmlFile referenced as

a dynamic value by the # symbols sur-

rounding the variable name; and VARI-

ABLE set to the variable name of the XML

file.

The code to parse an XML file (includ-

ing the first line comment):

<!-- Parse the XML File -->

<CFSET MyXml = XmlParse(MyXmlCode)>

Again, a variable is set, this time using

the XmlParse() method to parse the XML

file referenced as MyXmlCode from the

previous <CFFILE> tag.

Displaying XML in the
Browser with ColdFusion

Using the XML file in Code II, we can

display the XML in the Web browser as

follows:

<cfoutput>

<H1>

#MyXml.recipe.name.XmlText#

</H1>

</cfoutput>

This code would result in the output

shown in Image III.

The ColdFusion Markup Language

includes numerous tags and methods for

accessing and manipulating XML data

for processing and display in the Web

browser.

Macromedia and XML
As you can see, Dreamweaver, while not

a full-fledged XML editor, can be used to cre-

ate, edit, and validate your XML files. After

you have created your XML applications you

can then access them through ColdFusion as

well as Macromedia Flash MX 2004, which

includes many new features for manipulat-

ing XML including the XMLConnector for

accessing XML data from the server.

Kevin Ruse is a technical trainer for

Fortune 500 companies throughout the

United States. He is the author of XML

for Web Designers Using Macromedia

Studio MX 2004, published by Charles

River Media, Inc. kevin@kevinruse.com

im
a

g
e

 I
II

28 • MXDJ.COM 5 • 2004

FLASH
EXTENDING

Part 1 of this
article (Vol. 1,
issue 3) covered
a general
introduction to
the Extensibility
Layer and
discussed the
fundamental DOM
and the
relationship
between
different parts of
a Flash document
and their
associated
objects.
It introduced the
History panel
and showed you
how to build your
own Flash
panels. In this
installment we
take an in-depth
look at XML2UI
and Flash dialog
boxes.

Introducing JSAPI, Part 2 by guy watson

5 • 2004 MXDJ.COM • 29

Dialog Boxes – XUL
Some of the Timeline Effects that

come pre-installed with Flash MX 2004

allow the user to modify numerous set-

tings to change the outcome of the

effect. This is achieved using a dialog box

that appears when the Timeline Effect is

selected. The dialog box contains a Flash

movie control that allows the user to

modify the settings of the effect.

The fine engineers at Macromedia

have included the ability to provide

cross-platform dialog boxes in your Flash

extensions. This comes in the form of an

XML2UI Engine, which parses and dis-

plays dialog boxes, defined using an

XML-formatted language called XML2UI.

XML2UI is a subset of XUL (www.mozil-

la.org/projects/xul/xul.html). This article

assumes prior knowledge or experience

with XML.

Displaying a Dialog Box
Depending on what type of Flash

extension you’re creating, the XML2UI

document is defined in different ways. I

discuss the use of XML2UI making the

assumption that you are implementing

dialog boxes into your commands.

When creating a Flash command that

requires some kind of user interaction to

configure settings, you define your GUI in

a separate XML document with an .xml

file extension. This file contains the dialog

box definition. XML2UI documents are

parsed and displayed by Flash MX 2004,

so we have to be able to tell the inter-

preter to display a dialog box as needed.

In JSFL scripts a method is available

that will read the source of a dialog box

and then display it; this is called

“xmlPanel” and is a method of the docu-

ment object. As document objects repre-

sent Flash documents open in the

authoring environment, it’s possible to

open an XML2UI dialog box only when

one or more documents are open in the

Flash Authoring Environment. Below is an

example of the “xmlPanel” method:

flash.getDocumentDOM().xmlPanel("file:

///C:/myGUI.xml");

When this code is executed, the inter-

preter reads the dialog box definition

from the document specified and renders

the controls defined in our XML2UI docu-

ment. The standard operating system

interface controls are used, which means

that when your XML2UI document is ren-

dered on a Macintosh, the interface con-

trols will look different from when it’s ren-

dered on a Windows machine.

Notice the “getDocumentDOM”

method of the “flash” object. This method

returns the document object for the cur-

rently active Flash document.

When the “xmlPanel” method is

called, your JSFL script will pause execu-

tion until the dialog box is closed.

Dialog Box Definition
You define the interface of your dia-

log box by writing a structured XML doc-

ument that includes special XML nodes

that Flash will interpret and display. Each

XML node represents a particular part of

your interface and has attributes that

allow you to customize various settings

related to that particular element. You

can include various nodes in your XML2UI

document that represent common inter-

face controls such as textboxes, radio

buttons, and checkboxes. When Flash

parses your XML2UI document, all the

nodes that it understands are interpreted

into a visual interface. If you include

nodes that Flash doesn’t understand or

support in your XML2UI document, Flash

will just ignore them, as long as these

nodes haven’t been misspelled. All node

names and attribute names must be low-

ercase. All XML2UI documents begin and

end with a “dialog” node:

<dialog>…</dialog>

Inside the “dialog” node you define

the layout of your dialog box and the var-

ious interface controls you want to dis-

play within it.

The “dialog” node has various attri-

butes that you can specify. The “buttons”

attribute allows you to specify a combi-

nation of system buttons to display in

your dialog box. You can include three

system buttons: accept, cancel, and

help. Define the system buttons you

want using a comma-separated list; each

item in the list is the name of a system

button.

<dialog buttons="accept,help">…</dia-

log>

This markup will display an empty

dialog box with no title that contains two

system buttons, “OK” and “Help”. Flash

lays out system buttons automatically.

On both Windows and Macintosh, the

buttons are laid out on the bottom row

of the dialog box in the standard order

for that platform.

If you exclude the three system but-

tons from your dialog box by not specify-

ing a “buttons” attribute, then it may be

troublesome for the user to exit your dia-

log box; the Escape key will close the dia-

log box just as if the user had pressed the

Cancel button.

To specify a title for your dialog box,

add a title attribute to your “dialog” node,

the value of which will be the text that

Flash uses as the title for your dialog box.

Here is the markup for a dialog box

with no title attribute specified (see

Image I):

<dialog buttons="accept">

<label value="Enter your name" />

<textbox />

</dialog>

Here is the markup for a dialog box

with a title attribute (see Image II):

<dialog title="Enter your name" but-

tons="accept">

<textbox />

</dialog>

If your title is long make sure your

dialog box is wide enough to display it,

otherwise the end of your title will be

replaced with “…”.

Interface Controls
You can include various nodes in your

XML2UI document that represent com-

30 • MXDJ.COM 5 • 2004

im
a

g
e

 I
im

a
g

e
 I

I

mon interface controls. The interface con-

trols that Flash will recognize and display

are:

• Listbox

• Radio button

• Checkbox

• Textbox

• Color picker

• Dropdown list

• Slider bar

• Label

• Flash movie

Each tag that represents one of those

interface controls may require child

nodes and/or attributes to define the var-

ious characteristics of the element.

Textbox
The “textbox” node represents an

interface control that displays a textbox

into which a user can type. Various attri-

butes allow you to define the settings of

this particular element. For example, you

can specify the maximum number of

characters that the user can enter into a

textbox. You can also specify whether the

textbox can contain more than one line

of text, and you can define the default

text that is displayed in the textbox:

<textbox maxlength="50"

multiline="true" value="Your Address"

/>

This markup will display a multiline

textbox into which the user cannot type

more than 50 characters; the default text

displayed in it will be “Your Address”.

Label
The “label” node should be used regu-

larly in your dialog boxes to clarify the

purpose of a particular control. The

“label” node has two important attri-

butes; the first is the “value” attribute,

which defines the text that will be shown

for the label:

<label value="The label text" />

The “control” attribute allows you to

associate a label with a particular inter-

face control:

<label value="Enter your name" con-

trol="firstName" />

<textbox id="firstName" />

In the above markup, I have associat-

ed a label with a textbox by giving the

“textbox” node an “id” attribute, and by

setting this “id” as the value of the “con-

trol” attribute for my label.

Color Picker
It’s possible to show a chip of color in

your interface that when clicked will

expand to display a grid of colors from

which the user can select a desired color.

Upon selecting the desired color, the

color of the chip is updated.

To use a color picker in your dialog

box, specify a “colorchip” node. This node

has one important attribute, which you

can use to define the default hexadeci-

mal color displayed in the chip. The

attribute is named “color” and is used as

follows:

<dialog title="Color Picker" but-

tons="accept">

<colorchip color="#FF0000" />

</dialog>

The above markup will display a color

picker, set to red (#FF0000) until the user

changes it (see Image III).

Button
In addition to the ability to include

the three system buttons in your dialog

boxes (accept, cancel, help), it’s also pos-

sible to define your own buttons. To

define a button in your dialog box defini-

tion use the “button” node. The label that

is displayed on your button is defined

using the “label” attribute of the “button”

node:

<dialog title="Click the button">

<button label="Click me" />

</dialog>

Checkbox
Checkboxes are interface controls

that have two possible states, selected

and unselected (on/off, 0/1, true/false,

yes/no). Checkboxes are generally used

to allow the user to choose one or

more options from a list of available

options. Individual checkboxes can

have labels; to specify a label for a

checkbox you define the “label” attrib-

ute; the label is displayed on the right

of the checkbox.

Code I is a sample usage of checkbox-

es; this markup is rendered as shown in

Image IV.

Slider Bar
Slider bars are used to present an

option that requires the user to choose

an integer value from a specified range,

such as a percentage from 0–100. To

implement a slider bar into your dialog

box, use the “popupslider” node. This

node has two required attributes: “min-

value”, which is the minimum possible

value in the range, and “maxvalue”, which

is the maximum possible value in the

range:

<dialog title="Slider bar example"

buttons="accept">

<popupslider minvalue="0" maxval-

ue="100" />

</dialog>

Radio Buttons
Radio buttons are similar to check-

boxes when used individually, as they

have two states, selected and unselected

(on/off, 1/0, true/false, yes/no). However,

in Flash, radio buttons cannot function

individually; they have to be a part of a

radio button group. The difference

between a group of checkboxes and a

group of radio buttons is that only one

radio button in a group can be selected;

selecting another radio button in the

group deselects the currently selected

option in the group. In a group of check-

boxes it is possible to select all of the

checkboxes.

To implement a radio button in your

interface, you must first define a “radio-

group” node, which will contain the indi-

vidual radio button nodes that are a part

of the group.

<radiogroup>…</radiogroup>

5 • 2004 MXDJ.COM • 31

im
a

g
e

 I
II

Then you can define one or more

individual radio buttons group members

by adding a “radio” node as a child of the

“radiogroup” node.

<radigroup>

<radio />

<radio />

</radiogroup>

Radio buttons generally have a label

associated with them to display the

option they are choosing. To define a

label for a radio button you must specify

the “label” attribute (see Code II); this

markup is rendered as shown in Image V.

Listbox
Listboxes present a selection of

options to a user, allowing only one

option to be selected. To implement a

listbox control into your dialog box you

need to define a “listbox node”. The “list-

box” node contains individual “listitem”

nodes, which represent each individual

item in the listbox. Each listitem can be

assigned a label and a value. The value of

the “label” attribute is displayed as the

label for the option in the listbox, and the

“value” attribute is used to define the

value of the listbox as a group when the

item is selected (see Code III); this

markup is rendered as shown in Image VI.

We have four options, and rather than

the user having to scroll to see the

options that aren’t in view, we can define

how many items to display in the view-

able area at any one time using the

“rows” attribute of the “listbox” node. To

view all the items in the listbox without

having to scroll, set the value of the

“rows” attribute to be the total number of

list items in our listbox plus one (see

Code IV). Now the dialog box looks like

Image VII.

Dropdown List
Dropdown lists show multiple

options from which a user can choose

one. Dropdown lists and listboxes are

similar in function, but a listbox generally

takes up more space and a listbox’s

options are generally not displayed all at

once – thus the user has to scroll through

the options using a scrollbar in the con-

trol. To implement a dropdown list into

your dialog box use the “menulist” node,

which is a container for individual “menu-

item” nodes (see Code V).

To stick to the XUL guidelines you are

supposed to place another container

inside the “menulist” node. I assume that

the next version of Flash will have more

support for XUL elements and thus rec-

ommend that you adhere to these stan-

dards if you want your extensions to

work in the future.

The standard states that you should

place all “menuitem” nodes inside a

“menupop” node; our markup now looks

like Code VI. Whether you include it or

not, the outcome is the same (see Image

VIII).

By default, the dropdown list is empty

until an option is selected, but it’s possi-

ble to specify which menuitem is select-

ed by including a “selected” attribute for

the “menuitem” node that you want to be

selected. The value can be “true” or “false”,

where true is selected and false is not

selected. Not including the selected

attribute is the same as specifying a

“false” value (see Code VII).

It is good practice to include the

“selected” attribute for each “menuitem”

node in your dropdown list (see Code

VIII).

Flash Movie
In a Web browser, it’s also possible to

build dialog boxes using the numerous

form tags and input element tags. In the

early days it wasn’t possible for the state

of a form, or the various input elements,

to change based upon user input.

Dynamic forms became possible with the

introduction of DHTML into Web

browsers. With XML2UI, it’s also not possi-

ble to change a form once it has been

rendered. Macromedia decided to allow

developers to include Flash movies inside

a dialog box, thus creating a host of new

possibilities (e.g., loading dynamic data

into your dialog box from a remote loca-

tion).

Use a Flash movie control to create

dynamic dialog boxes that can change

state after they have been rendered. All

of the input controls in XML2UI and many

more are available in Flash MX 2004 as

Flash components. The Flash movie for

your dialog box can contain anything;

you may just want to have a pretty ani-

mation piece in your dialog box, or you

may want a little control over the look

and feel of your dialog box. You can also

have a Flash movie and any of XML2UI’s

other input controls in the same dialog

box.

If you’re having trouble writing an

XML2UI document, all you need to know

32 • MXDJ.COM 5 • 2004

im
a

g
e

 I
V

im
a

g
e

 V

im
a

g
e

 V
I

im
a

g
e

 V
II

im
a

g
e

 V
II

I

34 • MXDJ.COM 5 • 2004

is the basic XML to display a Flash movie;

then you can build all your dialog boxes

in Flash. It’s possible for Flash movies dis-

played in a dialog box to execute JSFL

code using the MMExecute function.

I made my own Flash command that

opens a dialog box containing a Flash

movie. The Flash movie allows the user to

browse for files and add them to a list.

When the dialog box is closed, a JSFL

script is executed for each file that was

added to the list, thus enabling batch-

scripting by Flash developers.

Image IX shows what my dialog box

looks like; I built it using Flash MX 2004

and Flash components. When the “Add

File” push button is pressed I execute

some JSFL using the MMExecute

ActionScript function, which opens a

“Select File” dialog box. When the user

selects a file, the fileURI is returned to

ActionScript via the MMExecute function,

and then I add it to the list.

To implement a Flash movie in your

dialog box, use the “flash” node, which is

not a standard element of XUL:

<dialog title="Batch Run Settings"

buttons="accept,cancel" >

<flash width="475" src="Batch

Run.swf" height="150" id="settings"

/>

</dialog>

You must include an “src” attribute for

all “flash” nodes so that when your dialog

box is rendered the interpreter knows

where to look for the Flash movie. You

must also specify the width and height

you want the Flash movie to be dis-

played at; otherwise it will be displayed

at 10 pixels wide by 10 pixels high. The

width and height attributes should

match those that you would use if you

were to display the Flash movie in an

HTML page.

Dialog Box Layout
A dialog box will not function correct-

ly if it isn’t laid out properly. In XML2UI

there are two ways of laying out your dia-

log boxes: (1) a grid system with rows

and columns, or (2) hboxes and vboxes,

which automatically lay out their con-

tents horizontally and vertically, respec-

tively (the better option in my opinion).

Grid Layout
To specify a grid to lay out your con-

tent, use the “grid” node, which is used to

group together a collection of columns

and rows. The columns and rows are sim-

ply containers and cannot be seen. The

columns and/or the rows you specify in

your grid are used either as white space

or to position interface controls. The

“grid” node should contain a “columns”

node, a “rows” node, or both:

<grid>

<columns>…</columns>

<rows>…</rows>

</grid>

Inside the “columns” node you define

one or more empty “column nodes”, and

each one adds a new column to your vir-

tual layout grid. Remember that columns

run from left to right. It’s recommended

that you don’t place any nodes within

your “column” nodes; if you do, then each

node contained within a “column” node is

placed inside each successive row in the

grid. The column with the most child

nodes determines the number of rows in

each column.

Inside the “rows” node, you define

one or more “row” nodes; each one adds

a new row to your virtual layout grid.

Remember that rows run from top to bot-

tom. Each node contained within a “row”

node is placed according to its sequential

position; for example, the first child node

of a “row” node will be placed in the first

column of the grid, and the second child

node in the second column of the grid.

To align the contents of a row, you

must specify an “align” attribute; its value

can be “start”, “center”, “end”, or “baseline”.

Code IX is a sample grid that contains

two columns, and each column has two

rows. This markup is rendered as shown

in Image X.

Note: It is good practice to always

define your columns first (with a list of

empty columns as its children) and then to

define your rows, each row containing the

interface controls. Also make sure that you

define enough empty columns for the

amount of interface controls in each row.

Box Layout
Boxes allow you to divide a dialog

box into a series of boxes. Interface con-

trols inside a box arrange themselves hor-

izontally or vertically. By combining a

series of boxes you can lay out your dia-

log box in no time, leaving the hard work

to the renderer as it decides where the

interface controls will be placed. There

are two types of boxes: (1) vertical boxes,

which lay out their contents one on top

of the other, and (2) horizontal boxes,

which lay out their contents one next to

the other. To lay out your content verti-

cally, use the “vbox” node, which is simply

a container node into which you place

the nodes of interface controls you want

to be arranged vertically (see Code X).

This markup produces the dialog box

shown in Image XI.

As you can see, the interface controls

are stacked on top of each other, from

top to bottom, which looks neat, but isn’t

perfect. However, arranging the interface

controls horizontally looks even worse.

To lay out your content horizontally,

use the “hbox” node, which is simply a

container node into which you place the

nodes of interface controls you want to

be arranged horizontally (see Code XI).

This markup produces the dialog box

shown in Image XII.

You can place multiple “vbox” nodes

inside an “hbox” node and vice versa,

allowing you to vertically arrange multi-

ple groups of horizontally arranged ele-

ments (see Code XII). This produces the

dialog box shown in Image XIII, which is

perfectly arranged.

im
a

g
e

 I
X

Which Settings Did the
User Choose?

The purpose of displaying a dialog

box is to allow the user to change various

settings, which will determine how your

Flash command will work. Excellent! But

how do we determine what choices the

user made in the dialog box? The

“xmlPanel” method returns an object

containing one ore more properties,

depending upon how many were defined

in the XML2UI document.

You define a property by specifying

an “id” attribute for any interface control

node; when the dialog box is closed,

Flash MX 2004 populates that particular

property name with the value that the

user chose. All properties of your dialog

box and their associated values are

grouped together in the object returned

from the “xmlPanel” method call. For

example, if I specify an “id” attribute as

“username” for a textbox node, the object

returned from the “xmlPanel” method will

contain a property named “username”

whose value will be what the user

entered into the textbox:

<dialog buttons="accept,cancel">

<textbox id="username"/>

</dialog>

There is one property that will always

be defined in the object returned by an

“xmlPanel” method call; the property is

named “dismiss”, and it can have one of

two possible string values. If the dialog

box was closed using the OK button,

then the value will be “accept”; however,

if the dialog box was closed using the

Cancel button, then the value will be

“cancel”. In addition, if a dialog box is

closed using the Cancel button, then only

the property “dismiss” will be returned

(see Code XIII).

It’s easy to get a return value from an

XML2UI dialog box that contains any of

the basic controls – the color picker, the

textbox, or the checkbox – as there is

only one option. However, for controls

such as the radio button group, list box,

and dropdown list, it’s a different story.

There are numerous options.

In a group of radio buttons only one

radio button can be selected, and thus

there is only one value to be returned.

However, each radio button in the group

can have a separate value. To specify a

value for a radio button, use the “value”

attribute of the radio node; you must also

specify an “id” attribute for the “radio-

group” that contains the radio buttons,

such that when the user makes a choice,

the value can be returned to JSFL (see

Code XIV). When the dialog box is dis-

played, the user is presented with a list of

options (see Image XIV).

When the dialog box is closed using

the OK button, the value that was

assigned to the selected radio button is

returned as the value for the radio group.

If I were to select “Yellow” and then close

the dialog box, an object would be

returned to JSFL containing two proper-

ties, (1) the default “dismiss” property,

which will have a value of “accept”, and

(2) another property called “color” whose

value will be “y”, as that is the value we

assigned to the “Yellow” radio button in

the XML2UI document for the dialog box.

The listbox and dropdown list work in

exactly the same way; you need to speci-

fy an “id” attribute for the “container”

node that contains the individual items.

Then you assign a “value” attribute to

each individual item (see Code XV).

In Code XV, the “listbox” node is the

container node; thus, we’ve given it an

“id” attribute. Its children, the “listitem”

nodes, are the individual items, and each

one has its own “value” attribute.

As always, there’s an exception to the

rule. It’s possible for Flash to pass multi-

ple values back to JSFL in the return

object, but it doesn’t work in the same

way as the other interface controls, as

each of the other interface controls will

only return one value. To solve this prob-

lem Macromedia has created a new

ActionScript object, which is available to

Flash movies running inside of dialog

boxes. This ActionScript object is conve-

niently named “XMLUI” and it has four

methods:

• XMLUI.accept()

• XMLUI.cancel()

• XMLUI.get()

• XMLUI.set()

The first two are simple; they do the

same thing that occurs when a user clicks

on the Accept button and the Cancel

button. Remember that the Accept but-

ton is displayed as “OK”.

If you want to customize the look and

feel of the OK and Cancel buttons by

implementing them into your Flash

movie, use these methods as opposed to

using the default system buttons.

The “XMLUI.get” method will return

the value of a “property” node defined in

the XML2UI document that contains the

Flash Movie:

XMLUI.get("propertyName");

The return value will always be a

string.

The “XMLUI.set” method will change

the value of a property node defined in

the XML2UI document that contains the

Flash movie:

XMLUI.set("propertyName","value")

This method will only accept a string

as the value for the “propertyName” argu-

ment, and it will only accept a string as

the value for the second argument (the

“value” argument), thus any ActionScript

arrays should be joined using the

array.join() method prior to using this

method.

5 • 2004 MXDJ.COM • 35

im
a

g
e

 X
im

a
g

e
 X

I
im

a
g

e
 X

II
I

im
a

g
e

 X
II

c
o

d
e

 I
c

o
d

e
 I

I
c

o
d

e
 I

II

c
o

d
e

 IV
c

o
d

e
 V

c
o

d
e

 V
I

36 • MXDJ.COM 5 • 2004

I mentioned that the XMLUI.set

method could only change the value of a

property, which means that the actual

property has to be defined in the XML2UI

document as well, which makes it impos-

sible to pass any old property back to

JSFL from a Flash movie control.

To define a property that you want to

be returned back to JSFL from a dialog

box, use the XML2UI “property” node.

<dialog title="Batch Run Settings"

buttons="accept,cancel" >

<flash width="475" src="Batch

Run.swf" height="150" id="settings"

/>

<property id="files" />

</dialog>

The “property” node has two possible

attributes. The first, the “id” attribute, is

required and defines the name of the

property whose value will be included in

the return object. The second, the “value”

attribute, allows you to define a default

value for the property in case that partic-

ular one is not set by the Flash movie

control.

Using ActionScript in a Flash movie

that is in that same dialog box, I can set

the value of the files property using:

theFiles=["tester.jpg","tester2.jpg"];

XMLUI.set("file",theFile.join(","));

Then the JSFL script that opened the

dialog box will return an object contain-

ing two properties when this dialog box

is closed. The first is the default “dismiss”

property and the second is the “file” prop-

erty, which will contain a string, concate-

nated with a comma (,) so I can then split

it back into an array using JSFL.

Resources
• XULPlanet: www.xulplanet.com

• Flash Extensibility: www.flashextensi-

bility.com

• ExtendFlash:

www.flashguru.co.uk/mailman/listin-

fo/extendflash_flashguru.co.uk

Guy Watson (aka FlashGuru) is a well-

recognized figure in the Flash communi-

ty, supporting the community with tutori-

als and source files, moderating the large

Flash community forums, and running

his own Flash resource Web site –

FlashGuru’s MX 101. Guy was one of the

two developers that created the award-

winning zoom interface for Relevare and

now works for Endemol UK, the creative

force behind reality television, producing

programs such as “Big Brother “and

“The Salon”. Guy spends most of his

time developing Flash games and appli-

cations for high-profile clients such as

Channel 5 Television, Ladbrookes, and

UK Style. guy@flashguru.co.uk

im
a

g
e

 X
IV

<dialog title="Checkbox example" buttons="accept">

<label value="Macromedia products you own:" />

<checkbox label="Macromedia Flash" />

<checkbox label="Macromedia Dreamweaver" />

<checkbox label="Macromedia Fireworks" />

<checkbox label="Macromedia Coldfusion" />

<checkbox label="Macromedia Sitesping" />

<checkbox label="Macromedia Homesite" />

<checkbox label="Macromedia Generator" />

<checkbox label="Macromedia Freehand" />

</dialog>

<dialog title="Radio button example" buttons="accept">

<label value="Your favourite color:" />

<radiogroup>

<radio label="Red" />

<radio label="Green" />

<radio label="Blue" />

<radio label="Pink" />

<radio label="Orange" />

<radio label="Yellow" />

<radio label="Other" />

</radiogroup>

</dialog>

<dialog title="Listbox example" buttons="accept">

<label value="Pick a shape:" />

<listbox>

<listitem label="Square" />

<listitem label="Circle" />

<listitem label="Triangle" />

<listitem label="Rectangle" />

</listbox>

</dialog>

<dialog title="Listbox example" buttons="accept">

<label value="Pick a shape:" />

<listbox rows="5">

<listitem label="Square" />

<listitem label="Circle" />

<listitem label="Triangle" />

<listitem label="Rectangle" />

</listbox>

</dialog>

<dialog title="Dropdown list example" buttons="accept">

<menulist>

<menuitem label="None" />

<menuitem label="One" />

<menuitem label="Two" />

<menuitem label="Three" />

</menulist>

</dialog>

<dialog title="Dropdown list example" buttons="accept">

<menulist>

<menupop>

<menuitem label="None" />

c
o

d
e

 X
c

o
d

e
 I

X
c

o
d

e
 V

II
I

c
o

d
e

 V
II

c
o

d
e

 X
V

c
o

d
e

 X
IV

c
o

d
e

 X
II

c
o

d
e

 X
III

c
o

d
e

 X
I

5 • 2004 MXDJ.COM • 37

<menuitem label="One" />

<menuitem label="Two" />

<menuitem label="Three" />

</menupop>

</menulist>

</dialog>

<dialog title="Dropdown list example" buttons="accept">

<menulist>

<menupop>

<menuitem label="None" selected="true" />

<menuitem label="One" selected="false" />

<menuitem label="Two" />

<menuitem label="Three" />

</menupop>

</menulist>

</dialog>

<dialog title="Dropdown list example" buttons="accept">

<menulist>

<menupop>

<menuitem label="None" selected="true" />

<menuitem label="One" selected="false" />

<menuitem label="Two" selected="false" />

<menuitem label="Three" selected="false" />

</menupop>

</menulist>

</dialog>

<dialog buttons="accept" title="Enter your name">

<grid>

<columns>

<column />

<column />

</columns>

<rows>

<row>

<label value="First Name:" control="fName" />

<textbox id="fName" />

</row>

<row>

<label value="Last Name:" control="sName" /><

<textbox id="sName" />

</row>

</rows>

</grid>

</dialog>

<dialog buttons="accept" title="Enter your name">

<vbox>

<label value="First Name:" control="fName" />

<textbox id="fName" />

<label value="Last Name:" control="sName" />

<textbox id="sName" />

</vbox>

</dialog>

<dialog buttons="accept" title="Enter your name">

<hbox>

<label value="First Name:" control="fName" />

<textbox id="fName" />

<label value="Last Name:" control="sName" />

<textbox id="sName" />

</hbox>

</dialog>

<dialog buttons="accept" title="Enter your name">

<vbox>

<hbox>

<label value="First Name:" control="fName" />

<textbox id="fName" />

</hbox>

<hbox>

<label value="Last Name:" control="sName" />

<textbox id="sName" />

</hbox>

</vbox>

</dialog>

settings=flash.getDocumentDOM().xmlPanel(‘file:///C:/myGU

I.xml’);

if(settings.dismiss == "accept")

{

username=settings.username

}

else

{

//cancelled the dialog box, use default settings or do

nothing

}

<dialog title="Radio button example" buttons="accept">

<label value="Your favourite color:" />

<radiogroup id="color">

<radio label="Red" value="r" />

<radio label="Green" value="g" />

<radio label="Blue" value="b" />

<radio label="Pink" value="p" />

<radio label="Orange" value="o" />

<radio label="Yellow" value="y" />

<radio label="Other" value="ot" />

</radiogroup>

</dialog>

<dialog title="Listbox example" buttons="accept">

<label value="Pick a shape:" />

<listbox id="shape">

<listitem label="Square" value="square" />

<listitem label="Circle" value="circle" />

<listitem label="Triangle" value="triangle" />

<listitem label="Rectangle" value="rectangle" />

</listbox>

</dialog>

c
o

d
e

 I
c

o
d

e
 I

I
c

o
d

e
 I

II

c
o

d
e

 IV
c

o
d

e
 V

c
o

d
e

 V
I

36 • MXDJ.COM 5 • 2004

I mentioned that the XMLUI.set

method could only change the value of a

property, which means that the actual

property has to be defined in the XML2UI

document as well, which makes it impos-

sible to pass any old property back to

JSFL from a Flash movie control.

To define a property that you want to

be returned back to JSFL from a dialog

box, use the XML2UI “property” node.

<dialog title="Batch Run Settings"

buttons="accept,cancel" >

<flash width="475" src="Batch

Run.swf" height="150" id="settings"

/>

<property id="files" />

</dialog>

The “property” node has two possible

attributes. The first, the “id” attribute, is

required and defines the name of the

property whose value will be included in

the return object. The second, the “value”

attribute, allows you to define a default

value for the property in case that partic-

ular one is not set by the Flash movie

control.

Using ActionScript in a Flash movie

that is in that same dialog box, I can set

the value of the files property using:

theFiles=["tester.jpg","tester2.jpg"];

XMLUI.set("file",theFile.join(","));

Then the JSFL script that opened the

dialog box will return an object contain-

ing two properties when this dialog box

is closed. The first is the default “dismiss”

property and the second is the “file” prop-

erty, which will contain a string, concate-

nated with a comma (,) so I can then split

it back into an array using JSFL.

Resources
• XULPlanet: www.xulplanet.com

• Flash Extensibility: www.flashextensi-

bility.com

• ExtendFlash:

www.flashguru.co.uk/mailman/listin-

fo/extendflash_flashguru.co.uk

Guy Watson (aka FlashGuru) is a well-

recognized figure in the Flash communi-

ty, supporting the community with tutori-

als and source files, moderating the large

Flash community forums, and running

his own Flash resource Web site –

FlashGuru’s MX 101. Guy was one of the

two developers that created the award-

winning zoom interface for Relevare and

now works for Endemol UK, the creative

force behind reality television, producing

programs such as “Big Brother “and

“The Salon”. Guy spends most of his

time developing Flash games and appli-

cations for high-profile clients such as

Channel 5 Television, Ladbrookes, and

UK Style. guy@flashguru.co.uk

im
a

g
e

 X
IV

<dialog title="Checkbox example" buttons="accept">

<label value="Macromedia products you own:" />

<checkbox label="Macromedia Flash" />

<checkbox label="Macromedia Dreamweaver" />

<checkbox label="Macromedia Fireworks" />

<checkbox label="Macromedia Coldfusion" />

<checkbox label="Macromedia Sitesping" />

<checkbox label="Macromedia Homesite" />

<checkbox label="Macromedia Generator" />

<checkbox label="Macromedia Freehand" />

</dialog>

<dialog title="Radio button example" buttons="accept">

<label value="Your favourite color:" />

<radiogroup>

<radio label="Red" />

<radio label="Green" />

<radio label="Blue" />

<radio label="Pink" />

<radio label="Orange" />

<radio label="Yellow" />

<radio label="Other" />

</radiogroup>

</dialog>

<dialog title="Listbox example" buttons="accept">

<label value="Pick a shape:" />

<listbox>

<listitem label="Square" />

<listitem label="Circle" />

<listitem label="Triangle" />

<listitem label="Rectangle" />

</listbox>

</dialog>

<dialog title="Listbox example" buttons="accept">

<label value="Pick a shape:" />

<listbox rows="5">

<listitem label="Square" />

<listitem label="Circle" />

<listitem label="Triangle" />

<listitem label="Rectangle" />

</listbox>

</dialog>

<dialog title="Dropdown list example" buttons="accept">

<menulist>

<menuitem label="None" />

<menuitem label="One" />

<menuitem label="Two" />

<menuitem label="Three" />

</menulist>

</dialog>

<dialog title="Dropdown list example" buttons="accept">

<menulist>

<menupop>

<menuitem label="None" />

c
o

d
e

 X
c

o
d

e
 I

X
c

o
d

e
 V

II
I

c
o

d
e

 V
II

c
o

d
e

 X
V

c
o

d
e

 X
IV

c
o

d
e

 X
II

c
o

d
e

 X
III

c
o

d
e

 X
I

5 • 2004 MXDJ.COM • 37

<menuitem label="One" />

<menuitem label="Two" />

<menuitem label="Three" />

</menupop>

</menulist>

</dialog>

<dialog title="Dropdown list example" buttons="accept">

<menulist>

<menupop>

<menuitem label="None" selected="true" />

<menuitem label="One" selected="false" />

<menuitem label="Two" />

<menuitem label="Three" />

</menupop>

</menulist>

</dialog>

<dialog title="Dropdown list example" buttons="accept">

<menulist>

<menupop>

<menuitem label="None" selected="true" />

<menuitem label="One" selected="false" />

<menuitem label="Two" selected="false" />

<menuitem label="Three" selected="false" />

</menupop>

</menulist>

</dialog>

<dialog buttons="accept" title="Enter your name">

<grid>

<columns>

<column />

<column />

</columns>

<rows>

<row>

<label value="First Name:" control="fName" />

<textbox id="fName" />

</row>

<row>

<label value="Last Name:" control="sName" /><

<textbox id="sName" />

</row>

</rows>

</grid>

</dialog>

<dialog buttons="accept" title="Enter your name">

<vbox>

<label value="First Name:" control="fName" />

<textbox id="fName" />

<label value="Last Name:" control="sName" />

<textbox id="sName" />

</vbox>

</dialog>

<dialog buttons="accept" title="Enter your name">

<hbox>

<label value="First Name:" control="fName" />

<textbox id="fName" />

<label value="Last Name:" control="sName" />

<textbox id="sName" />

</hbox>

</dialog>

<dialog buttons="accept" title="Enter your name">

<vbox>

<hbox>

<label value="First Name:" control="fName" />

<textbox id="fName" />

</hbox>

<hbox>

<label value="Last Name:" control="sName" />

<textbox id="sName" />

</hbox>

</vbox>

</dialog>

settings=flash.getDocumentDOM().xmlPanel(‘file:///C:/myGU

I.xml’);

if(settings.dismiss == "accept")

{

username=settings.username

}

else

{

//cancelled the dialog box, use default settings or do

nothing

}

<dialog title="Radio button example" buttons="accept">

<label value="Your favourite color:" />

<radiogroup id="color">

<radio label="Red" value="r" />

<radio label="Green" value="g" />

<radio label="Blue" value="b" />

<radio label="Pink" value="p" />

<radio label="Orange" value="o" />

<radio label="Yellow" value="y" />

<radio label="Other" value="ot" />

</radiogroup>

</dialog>

<dialog title="Listbox example" buttons="accept">

<label value="Pick a shape:" />

<listbox id="shape">

<listitem label="Square" value="square" />

<listitem label="Circle" value="circle" />

<listitem label="Triangle" value="triangle" />

<listitem label="Rectangle" value="rectangle" />

</listbox>

</dialog>

38 • MXDJ.COM 5 • 2004

f you do Flash Remoting in .NET –

read on. We at MXDJ began to hear

about FlashORB and went straight

to the source for an inside view of this

alternative to Macromedia’s Flash

Remoting.

Everyone is talking about rich

Internet applications. Some are experi-

menting; others are building real appli-

cations. Flash MX downloads are exceed-

ing all expectations, and there is a gener-

al consensus that the Internet has

evolved enough to take the user experi-

ence to the next level. With all the

advancements on the client side, howev-

er, there has not been enough innova-

tion on the server side. Macromedia has

provided the initial set of the server-side

technologies with Flash Remoting, but

has not updated them since the initial

release. The technology is still intrusive,

noncohesive, and expensive. Many of

these factors have influenced the cre-

ation of several alternatives to Flash

Remoting. One of them, FlashORB, is

reviewed in this article.

FlashORB is essentially a Flash

Messaging server, consisting of three

major subsystems: Flash Remoting, Web

Services Gateway, and XML Socket

Server. Available in two editions (Java

and .NET), the software provides a new

way to integrate Flash clients with the

server-side components (Java/.NET

objects, EJBs, Web services, business

applications). Architecturally the product

is positioned between the client Flash UI

and the server-side application; as a

result, FlashORB addresses the needs of

both UI and server component develop-

ers. For example, facilities within

FlashORB like Call Tracing in the

Management Console and the

ActionScript code generator aid the UI

team, while custom serializers, activation

modes, and object factories help server-

side developers. FlashORB nicely sepa-

rates the responsibilities of the UI and the

sever-side development teams.

A Few Words About Flash
Remoting

If you are new to the concept of

Flash Remoting, it is worthwhile to get a

brief overview of the technology before

delving into the core of FlashORB. The

primary purpose of Flash Remoting is to

enable Flash clients to perform invoca-

tions on server-side services (Java/.NET

objects, Web services, etc.). The technol-

ogy consists of two primary parts: Flash

Remoting Components and Flash

Remoting Server. The Remoting compo-

nents are a set of ActionScript programs

that enable connectivity and messaging

between Flash clients and the server

side. The Flash Remoting Server is

responsible for receiving client requests,

dispatching invocations on the specified

components, and serializing responses

in the appropriate format. The format

utilized in Flash Remoting is called AMF

(Action Message Format); it is a binary

format but is streamed over

HTTP/HTTPS to ease firewall traversal.

Code I and Code II demonstrate the

server-side class and the client-side

ActionScript invoking a method of the

class.

The operation flow is very simple.

1. Flash client creates a connection to a

server running at “http://remoting

server url” (line 3).

2. It obtains a reference to a service iden-

tified by the full type (class) name. (line

4).

3. The client invokes a method from the

server class, as if it is present locally

(line 5).

4. Flash Remoting Server receives client

request and performs method invoca-

tion on the designated type(class). The

result from the method invocation is

sent to the client.

5. The response received from the server

is dispatched into a function named

as methodname_Result, where

methodname is the invoked method

(line 7).

Better Flash Remoting with
.NET

Now let’s take a look at FlashORB as a

remoting solution focusing on the main

features differentiating it from the com-

peting alternatives available in the mar-

ketplace. Each feature will be demon-

strated with an example to clarify its use

with actual code. For the simplicity and

clarity, all of the examples use

FlashORB.NET – the edition of the prod-

uct for the Microsoft.NET environment; all

the features discussed are also available

in the Java edition.

Type Adaptation
One of the major product differentia-

tors is the type adaptation system. Driven

by the design principle of nonintrusive

integration, the type adaptation system

allows automatic plug-and-play of

FlashORB into user applications. To

understand how type adaptation works

consider the example in Code III and

Code IV.

The Flash side sends an untyped

object to the server (line 10). When

FlashORB receives such an object it tries

to convert it into the formal argument

type of the invoked method. All the fields

from the untyped object are matched

against the fields in the formal argument

type. This process of converting data

received from Flash clients into formal

argument types is called “type adapta-

tion.” Although the example shown is

rather primitive, FlashORB can easily con-

vert even the most complicated data

structures. It also works well with the

built-in collection and utility classes. For

example, an instance of ActionScript

Array can be adapted to

System.Collections.ArrayList or

System.Collections.Stack or any other

data structure where data is organized in

a linear fashion.

Security
The lack of any security is the Achilles heel

showcase

A New Solution for Flash Remoting
Integrating Flash clients with server-side components

by joe orbman

i

5 • 2004 MXDJ.COM • 39

of most Flash Remoting servers. A particularly

egregious example in Code V demonstrates

the severity of this omission. Since all public

classes and their corresponding public meth-

ods are automatically exposed for Flash

Remoting invocations, the code can shut

down any Java VM or IIS application.

As you can see in Code V, without securi-

ty restrictions in place it takes just a few lines

of code to bring down the entire server.

Therefore, securing Flash Remoting applica-

tions is of critical importance. Using

FlashORB’s configuration file or the manage-

ment console, developers or administrators

can restrict or grant access to the code iden-

tified by the package/namespace name or

full class name. There are four types of restric-

tions that can be grouped together: restric-

tion by role name, IP address, subnet address,

or hostname. For example, to prevent the

code above from working, FlashORB can be

configured to reject access to java.lang.* for

any requests arriving from clients whose IP

addresses match the *.*.*.* pattern.

Remote References
The concept of remote references is

not new in distributed computing.

However, it is a novel in the area of Flash

Remoting. FlashORB is the only server

supporting remote references. If you’re

wondering what they are and how it

works consider the example in Code VI.

Remote references are client-side proxies

to server-side objects. On the server side a

remote reference is created by developing a

class that implements the Flashorb.IRemote

(line 3) interface and providing a method

that returns an instance of itself (line 9). The

ActionScript code shown in Code VII demon-

strates how to obtain a remote reference to

an instance of the RemoteReferenceClass

class and invoke its methods.

A Flash Remoting service invokes a

method on a server-side object (line 5).

Since the method on the server side

returns an instance of Flashorb.IRemote,

FlashORB serializes it as a remote refer-

ence. The client side receives and caches

the reference (lines 7–9) and then per-

forms a remote method invocation via

the remote reference object (line 11).

This feature brings the UI and the

server sides closer together and provides

an extra level of sophistication for the

client/server applications.

Management Console
The FlashORB management console is a

Flash Remoting application designed to sim-

plify the tasks of managing and configuring

the product. Currently the console provides

the following capabilities: display and/or con-

figuration of the product runtime informa-

tion, FlashORB security, logging categories,

logging policies, handler chains, and object

factories. Also, the console exposes the Call

Trace feature described in greater detail later

in the article. Image I is a screenshot of one of

the modules in the management console.

XML Socket Server
FlashORB was designed to provide a

rich framework for building interactive rich

Internet applications. The requirements of

the rich-client applications go far beyond

Flash Remoting and demand support for

various message exchange paradigms:

point-to-point, broadcast, unicast, server

event push, etc. FlashORB includes an XML

Socket Server to address these needs. The

socket server is very lightweight and is

optimized for the maximum performance.

As the name suggests, the primary usage

of this feature is processing XML docu-

ments; it can, however, also process binary

messages. It has a rich set of easy-to-use

APIs to facilitate building interactive mes-

saging applications with the features like

chat, message broadcast, event notifica-

tion, and asynchronous server-side

updates. For example, FlashORB

Management console uses XML Socket

Server to receive a continuous stream of

im
a

g
e

 I

im
a

g
e

 I
I

With more than 15 years

of software engineering

practice and 8 years of

distributed computing

experience, Joe Orbman

plays a key role in the

day-to-day operations of

Midnight Coders. Joe is

responsible for product

architecture, strategic

positioning, and devel-

oper communication.

orbman@flashorb.com

c
o

d
e

 V
c

o
d

e
 V

I
c

o
d

e
 V

II
c

o
d

e
 I

c
o

d
e

 I
I

c
o

d
e

 I
II

c
o

d
e

 I
V

40 • MXDJ.COM 5 • 2004

server “runtime stats” without resorting to

a sluggish polling architecture.

Call Tracing
Call tracing is a concept slightly similar to

what Flash developers know as the

“NetConnection Debugger.”If you are not

familiar with this concept, NetDebug is a

debugging facility that exposes detailed

information about Flash Remoting calls. The

biggest disadvantage of this, however, is that

NetDebug works only in the development

environment for calls that occur during the

current execution of the application. It is

impossible to inspect Remoting calls from

previous application runs. Unlike its

Macromedia counterpart, FlashORB call trac-

ing is a server-side feature. As a result, it

works regardless of whether the Remoting

application was executed in a development

environment, a standalone Flash player or in

a browser. When the feature is enabled, the

server efficiently persists the data about

Flash Remoting calls. This allows the Call

Trace subsystem to provide data about the

invocations that occurred during the current

session, or any previous session. Additionally

a facility is provided to apply search filters

onto the data in order to highlight specific

invocations. For example, you can create a

filter to search for all invocations where invo-

cation time is greater than 500ms and

method name contains verb “set.”

The FlashORB management console

provides a graphical Call Tracing module to

make this information easily accessible to

developers. The module allows observing

invocations in real time as well as browsing

and searching the call trace store. Each

invocation displayed in the module can be

inspected to get the details about method

argument values and the return value.

Image II is a screenshot showing the Call

Tracing module from the console.

Conclusion
As application developers seek new

ways to differentiate their software and to

improve the end-user experience, the

client/server development frameworks

must be able to provide a new, rich set of

features. Flash Remoting is a great

client/server integration approach, but it

must rapidly evolve to simplify the inte-

gration and shorten the gap between UI

front ends and server-side components.

FlashORB is an example of a quickly evolv-

ing, feature-rich development framework.

A free evaluation copy is available at

www.flashorb.com; try it out!

namespace Flashorb.Examples
{

public class SampleClass
{

public int EchoInteger(int i)
{
return i;
}

}
}

Code II: Client-side ActionScript
1 #include "NetServices.as"
2
3 conx = NetServices.createGatewayConnection
("http://remoting server url");
4 service = conx.getService("Flashorb.Examples.SampleClass", this
);
5 service.EchoInteger(5);
6
7 function EchoInteger_Result(result)
8 {
9 trace("received back " + result);
10 }

namespace Flashorb.Examples
{

public class HRDepartment
{

public Employee AddEmployee(Employee emp)
{
// some business logic here
return emp;
}

}

public class Employee
{
String Name;
String Title;
long Salary;
}

}

Code IV: Client side ActionScript
1 #include "NetServices.as"
2
3 conx = NetServices.createGatewayConnection("http://remoting serv-
er url");
4 service = conx.getService("Flashorb.Examples.HRDepartment", this
);
5
6 var employee = new Object();
7 employee.Name = "Joe Orbman";
8 employee.Title = "Chief Architect";
9 employee.Salary = 200000;
10 service.AddEmployee(employee);
11
12 function AddEmployee_Result(result)
13 {
14 trace("received back employee " + result.Name);
15 }

Shutting down unsecure Java VM
#include "NetServices.as"
conx = NetServices.createGatewayConnection("http://remoting server
url");
service = conx.getService("java.lang.System", this);
service.exit(1);

Shutting down unsecure .NET application
#include "NetServices.as"
conx = NetServices.createGatewayConnection("http://remoting server
url");
service = conx.getService("System.Environment", this);
service.Exit(1);

Code VI: Server Side C# Classes
1 namespace Flashorb.Examples
2{
3 public class RemoteReferenceClass : Flashorb.IRemote
4 {
5 private string data;
6
7 public void IRemote getRemoteReference()
8 {
9 return this;
10 }
11
12 public void setData(string data)
13 {
14 this.data = data;
15 }
16
17 public string getData()
18 {
19 return data;
20 }
21 }
22 }

Code VII: Client-side ActionScript
1 #include "NetServices.as"
2
3 conx = NetServices.createGatewayConnection("http://remoting serv-
er url");
4 service =
conx.getService("Flashorb.Examples.RemoteReferenceClass", this);
5 service.getRemoteReference();
6
7 function getRemoteReference_Result(result)
8 {
9 this.remoteReference = result;
10 // calling remote method
11 this.remoteReference.setData("Remote References are cool");
12 }
13
14 function setData_Result(result)
15 {
16 this.reference.getData();
17 }
18
19 function getData_Result(result)
20 {
21 // should print "Remote References are cool"
22 trace(result);
23 }

42 • MXDJ.COM 5 • 2004

The value of any piece of

software is in how much

time and effort it can save

you. What good is the

software if it is not going

to increase productivity

and efficiency? In several

of my past articles, I have

examined ways of

automating common or

repetitive processes. To

that end, I am continuing

the discussion this month.

One of the great new

features of Fireworks MX

2004 is the Styles Panel,

shown in Image I.

5 • 2004 MXDJ.COM • 43

44 • MXDJ.COM 5 • 2004

This feature allows you to capture

the properties of an object for use, later

on, in another object. As an example,

suppose you were to create an object

with color shading and a bevel

effect. Further, let’s suppose that

this particular job often. We can

simply create it once and cap-

ture it as a Style. Each of the

buttons is referred to as a pre-

view icon.

The wording I just used is

important. Notice I didn’t say

that you create the attributes in

the Style, but simply capture

them for later use. As you will

soon see, we can determine

which attributes we want to

keep or not keep.

Let’s begin by creating a sim-

ple Style.

Creating a Style
Let me start by doing something sim-

ple in order to show how easy it is to use.

I am going to set up a simple object with

a fill color and stroke as shown in Image

II.

Obviously, it’s not very exciting.

However, it will give you a good working

knowledge of using Styles for more com-

plex scenarios.

Make sure that object is selected

before you do the next step. In the Styles

panel, click new. This is shown in Image

III.

Here you can decide what you want

to name your Style, as well as the proper-

ties you want to retain for the Style. For

instance, in this case, if you were to shut

off the Fill type and Fill color, you would

just be left with the Stroke properties.

Notice as I stated earlier, we are not

creating the Style’s properties here. Those

come from the object itself. We are only

deciding which attributes we want to

keep.

Once I say OK, the style is then added

to the Styles Panel, with a preview icon,

and can be used at any time.

To use the Style in another object, just

select the object and then click on the

preview icon in the Styles panel. As you

can see, applying the Style is extraordi-

narily easy.

You should be aware that Fireworks

saves many effects, such as shadow,

glow, bevel, emboss, and stroke size, with

absolute values. This means that a Style

you apply to a small object may look dif-

ferent with a large object. For that rea-

son, I may have similar styles for different

size objects.

Editing a Style
To edit a Style, it is important that you

first make certain no objects are selected.

What I usually like to do is select

Select>Deselect from the menu. That

way, you know nothing is selected. I then

double-click on the preview icon in the

Styles panel. This opens up the dialogue

box shown in Image III.

If you needed to change the actual

attributes, such as the color of the fill or

the stroke size, you would need to create

a new Style altogether.

One handy feature is that you can

have two styles with the same name.

What I sometimes like to do is apply a

Style to an object, change the attrib-

utes in the object, and capture the

new attributes to a Style with the

same name. I then delete the original

Style.

Once again, you cannot directly

change the attributes in the Style.

Importing and Exporting
As a designer, many times I might

need to share styles with various other

members of the team. Styles can easily

be shared with other Fireworks users by

using the Import and Export features

found in the Options menu.

You first select the Style and then

im
a

g
e

 I

“I am always amazed when I see a software

user spend a large amount of time learning

a complex feature, but then completely

ignore a very simple feature”

select Export Styles in the panel’s option

menu. You can decide where you want

the file saved and, after naming it, the file

will have an extension of .stl.

If you need to load an exported Style,

simply select Import Styles from the

option menu and browse to the file’s

location.

As a handy feature, you can export mul-

tiple Styles at the same time. You could click

on the first Style and then shift-click on the

last Style if they are grouped together or, if

they are not adjacent, you could ctrl-click on

the Styles that you

want. Once they are

selected, you then

export as you would

an individual Style. All

the Styles would be

saved to the one file

name. The user

importing the Styles

would then get all the Styles in the file.

One other advantage is that, from

time to time, you can find some nice

Styles in the Fireworks section of the

Macromedia Exchange. It is worth taking

a look from time to time at www.macro-

media.com and locating the Exchange

link in the navigation bar.

Resetting the Styles
There may be a time when you want

to reset your Styles panel back to the

default settings. This would not only

mean the original settings, but also delet-

ing any custom Styles you might have.

Simply select the Reset Styles menu

item from the option menu. You will

receive a warning message and, after you

select OK, the panel would be reset and

any custom Styles would be gone (as well

as the subsequent preview icons).

Conclusion
I am always amazed when I see a

software user spend a large amount of

time learning a complex feature, but

then completely ignore a very simple

feature.

As you can easily see, Styles is relative-

ly simple to use, but is a powerful time-

saving tool. This is in keeping with my pre-

vious articles discussing reusability.

Next month, we are going to examine

situations where external programs

might be useful.

Charles E. Brown is the author of

Fireworks MX 2004 Zero to Hero and

Beginning Dreamweaver MX 2004. He

also contributed to The Macromedia Studio

MX Bible. charles@charlesebrown.net

5 • 2004 MXDJ.COM • 45

im
a

g
e

 I
II

im
a

g
e

 I
I

theobjectpanel

he Object panel is the key to virtually everything you can do in

FreeHand MX. Most of us don’t take the time to understand the

Object panel, however, and it becomes a source of frustration.

pp

oo

46 • MXDJ.COM 5 • 2004

pp

oo

5 • 2004 MXDJ.COM • 47

The Object Panel
It seems as though every time you

look at the Object panel, its appearance

has changed. That’s because the panel

changes to reflect the attributes and fea-

tures of whatever is selected or “live” in

the document. Vector objects will display

fill, stroke, and effects information; text

will show font name, size, color, and

more. If you select an imported graphic,

the panel will tell you what kind of

graphic it is and will provide a button to

allow you to edit the graphic in Fireworks

or Flash, or the Links button so you can

change the object or gain further infor-

mation about it.

To compound your initial confusion,

effects that are added to any object

appear in a hierarchical list that can be

rearranged – sometimes. Obviously, an

understanding of this powerful panel is in

order. By the way, if you don’t see the

Object panel, go to Window>Object

(Cmd/Ctrl+F3) to pop it up – you can

move it anywhere on your screen that’s

convenient.

By default, the Object panel is docked

with the Document panel in the

Properties “barge.”To select one or the

other, click its tab. If you want to separate

the two panels, click on the Properties

Options icon in the top-right corner of

the barge and select Group Object With

(or Group Document With), then either

choose another panel to dock with, or

New Panel Group. Other panels may be

added to the barge in the same manner,

but these two panels get a lot of use and

should probably remain in the default

arrangement.

Image I shows the Object panel with

a simple path selected. There are three

buttons at the top left of the panel. The

first has a pencil and a plus sign – this is

the Add Stroke button. In the middle is

the Add Fill button, which shows a paint

bucket and a plus sign. The third button

has an embossed dot with a drop shad-

ow, and indicates the Add Effects feature.

To the right side of the panel head are

two icons that have trashcans. The large

trashcan on the right deletes any item in

the menu that is highlighted. The smaller

trashcan with the red menu marks is used

to delete an entire branch from the

menu. If you had added a fill and a stroke

and an effect or two to an object, clicking

the Delete Branch button would remove

the fill, stroke, and all the effects, leaving

the original object untouched. If there is

no “branch,” this button is grayed out.

The rest of the panel is divided into

two areas: the Properties list and the

Attributes area. Depending on the object

that is selected, and the property in the

list, the contents of the Attributes area

will display different information.

We could take several pages to

describe the various looks and types of

information that the Object panel can

provide. To alleviate boredom, it might be

easier and more informative to see how

everything works in action. I’ve designed

a logo for a phony product in order to

use as many tricks and tools as possible.

It will be obvious to you that many of the

tricks wouldn’t be used in a decent logo,

but you can at least get an idea of what

can be done. Just as obviously, some

steps have been added just to show a

FreeHand feature.

Imported Graphics
I started by importing (File>Import) a

grayscale image of a tiger. In order to

separate the tiger’s head from the back-

ground and the rest of his body, I needed

to trace an outline with the Pen tool. You

can change the color of a grayscale

image, so I made it a lighter color in order

to make the tracing more visible. To do

so, I created a brown color in the Mixer

panel and dragged a swatch of the new

color onto the Image properties Fill box

in the Object panel (see Image II). Now

tracing the tiger’s outline would be less

confusing. The Object panel displays the

size and location of the image on the

page, along with any scaling changes I

may have made. The Image Source drop-

down menu would be active if I had color

management turned on. The Links but-

ton is active only when an imported

object is selected. Clicking the button

opens the Links panel, where you can see

the names, locations, and sizes of the

files; extract, change, or embed the files;

or select a link from the list and select it

(show) in the document.

Image III shows examples of the use

of alpha channel and transparency. The

top image is a simple grayscale image

placed on top of a blue fill. The middle

image has an alpha channel and it is dis-

played via the button in the Object panel.

The alpha channel has been knocked out

of the image, allowing the background

color to show. On the bottom of the fig-

ure, the alpha channel has been dis-

played, and Transparency has been

checked. Doing so allows the back-

48 • MXDJ.COM 5 • 2004

im
a

g
e

 I

im
a

g
e

 I
I

im
a

g
e

 I
II

ground fill color to show through the

grayscale image.

For my logo, I wanted to have a pos-

terized look for the tiger’s head, so I

selected the grayscale image (CMYK or

RGB images can’t be adjusted like this)

and clicked the Image Adjust button in

the bottom of the Object panel. Image

IV shows the result. I clicked the

stairstep icon to get a predefined four-

color posterization for the image. If I

wanted, I could move the individual bars

in the Image Adjust window to create a

custom curve as you would adjust the

Curves panel in Fireworks...which brings

up the next button – the roundtrip

Fireworks editor. Clicking this button

opens your image in Fireworks for any

editing you would like to do.

Interestingly enough, any scale or color

modifications you’ve made to an image

in FreeHand will not be applied when

the image opens in Fireworks. But be

careful when doing the roundtrip. You

have a choice of using the original

image or a PNG of the image. If you

choose the original, any changes you

make will be permanent, and there’s no

going back. However, if you choose the

PNG option, you will be asked to find a

Fireworks PNG document to work with.

If the image you’ve selected isn’t a

Fireworks PNG, your only option is to

open the original and Save A Copy as a

PNG. Then you can click the Done but-

ton, which will return you to FreeHand.

Once there, place the PNG you just cre-

ated and click the Fireworks roundtrip

button. At that time you can make any

adjustments you wish. Clicking the Done

button brings you back to FreeHand,

where you’ll see your updated image.

Please keep in mind that when you

select a grayscale TIFF in FreeHand and

use the Fireworks roundtrip button you

will convert the grayscale to RGB, and

whether you use the PNG option or

work directly on the original, the origi-

nal grayscale will be modified perma-

nently. Be careful!

A gray tiger in a logo isn’t too excit-

ing, so I changed the colors by employ-

ing Xtras>Colors>Name All Colors to add

four gray tones to the Swatches panel.

Then I created new colors for the tiger in

the Mixer panel and used the Find &

Replace window to change colors. That

was a simple matter of selecting a gray

tone in the From column and choosing a

color in the To column.

At this point, I had a traced, poster-

ized tiger on the drawing board. I cut

(Cmd/Ctrl + x) the posterized tiger,

selected the outline path, and chose

Edit>Paste Inside to create what other

programs call a clipping path. The tiger’s

head was now separated from its back-

ground, and finished for the moment.

Text Handling
As soon as you select the Text tool,

the Object panel changes appearance to

give you a multitude of text attribute

options. Image V shows the initial attrib-

ute area setup. There are so many vari-

ables that a separate article is needed to

do it justice.

The product needed a name, so I

typed “TIGER CHOW” in a bold, heavy font

(Block Heavy), with a carriage return

(Return/Enter key) between words, and

centered both lines of text.

I drew a circle with the Ellipse tool by

holding down the Shift and Option/Alt

key and clicking/dragging from the cen-

ter of the tiger’s face. The circle wasn’t

quite centered, so I added the Spacebar

with my thumb and was able to

drag the constrained circle to a

better position.

Leaving the circle select-

ed, I Shift-selected the text

block and chose Text>Attach

to Path (Shift+Cmd/Ctrl+Y).

“TIGER” went to the top of the

circle, and “CHOW” moved to

the bottom (see Image VI: 1).

And, boy does it look ugly!

FreeHand admittedly has a

problem in that it doesn’t anti-

alias fonts after they’ve been

attached to paths or

rotated/skewed. It will print

fine, but looks a little scary on the moni-

tor. Have faith.

The text was given a yellow-orange

“tiger” color, but looked pretty wimpy, so I

added a heavy black outline (8 points) by

clicking the Add Stroke button in the

Object panel. If you’ve got typographical

sensitivities like I do, you can understand

why I was horrified – the bold stroke

encroached on the inside of the letterform

(see Image VI: 2), and the text was getting

uglier by the minute. There are times

when this will work – but I can rarely find

them. Try as you might, you cannot

rearrange the stroke and fill in the hierar-

chy of the Object (Text) panel. The stroke

will always be on top. So, to get above the

problem, so to speak, I cloned the text and

deleted the stroke from the Properties list.

Bingo! The text was outlined as I had in

mind, (see Image VI: 3) and my sensibilities

were calmed, even though the orange let-

terforms were truncated due to the trans-

forming and kerning I had done.

At this point I should tell you that you

can eliminate the poor text rendering

entirely by choosing Text>Convert to

Paths (Shift+Cmd/Ctrl+P). Since the text

becomes vector art at that time, render-

ing is not a problem – but you cannot

edit the text as I’ll do later in the article.

The text was still a little on the boring

side, so I selected the top text block and

chose Bevel and Emboss>Inner Bevel from

the Add Effects drop-down menu. After

adjusting the settings to my pleasure, I pro-

nounced the text done (see Image VI: 4).

Wrapping Up the Cat
Okay, the text is okay, now to add

some punch to the cat. I started by

selecting it and moving it to a new layer

5 • 2004 MXDJ.COM • 49

im
a

g
e

 I
V

im
a

g
e

 V

above the text layer. To accomplish that, I

went to the Layers panel, chose New

from the Layers options drop-down

menu, and named the new layer “Tiger.” I

switched to the Scale tool (keyboard

shortcuts really help in FreeHand, the

Scale tool default is F10, but I use

Shift+Cmd/Ctrl+S so I don’t have to move

my hand too far out of typing position). I

enlarged the tiger’s head so it overlapped

the text enough to make it interesting.

But that wasn’t enough, so in the Object

panel I selected Add Effects>Shadow and

Glow>Drop Shadow, and increased the

distance to really raise the head above

the text (see Image VII: 1).

That was okay, but it still lacked some-

thing, so back to Add Effects>Bend (see

Image VII: 2). Bad idea. Kitty is wet and

mad. The solution was to clone and hide

the tiger’s head (View>Hide Selection). I

enlarged the original tiger head. Then I

chose Edit>Cut Contents and deleted the

colored image. That left the outline path

of the tiger, which I filled with red. Now

when I chose the Bend effect, I got the

splash I was looking for. I sent the red

splash behind the text, and chose

View>Show All to bring the head back

into view. The splash looked a little stark,

so I added a glow (Add Effects>Shadow

and Glow>Outer Glow) to soften the

effect and give a little added weight to

the logo (see Image VII: 3).

Editing
I felt pretty good about my efforts so

far, but then my wife told me that the

product name is “Tiger’s Chew,” not

“Tiger Chow.” Boy, I have to pay closer

attention to her when she’s talking on,

and on, and on… If I had converted the

text to paths way back at the beginning,

I’d have a lot of work ahead of me, and

I’d be pretty much like the bent cat in

Image VII: 2. Luckily, I chose to go with

live text, so it was a matter of choosing

Edit>Find & Replace>Text. When that

dialog box opened I typed “TIGER

CHOW” in the Find field, and “TIGER’S

CHEW” in the Replace field. I clicked the

Find First button, then Change All, and

closed the box. All the effects, strokes

and basic placement are still in place.

This task could have taken several min-

utes had the text been converted to

paths, but was done in a few seconds by

keeping the text live.

Finishing Touches
The product had to be mentioned, so

a rectangle was drawn and ungrouped. In

the Object panel, I added a light fill color,

and for a little texture, I applied another

fill. This time it was a tiled fill made of a

few lines to indicate patches of hair. Since

the tiled fill is above the solid colored fill,

both are seen. I added a 2-point brown

stroke to the rectangle, but for interest I

added a Ragged effect, with three copies.

Then for good measure, I tacked on an

inner shadow.

I set the text for the box and thought

that the whole arrangement was still a lit-

tle bland. So I selected corner points on

the rectangle and dragged out control

handles to give the rectangle a slight S-

curve as shown in Image VIII. Notice in

the figure that all the ragged lines, the

solid fill color, the tiled fill, and the inner

shadow adapt immediately to the new

path without any work on my part.

FreeHand takes care of everything!

I still wasn’t satisfied, so I applied an

envelope to the rectangle and text.

Again, the effects follow my changes per-

fectly. A few more tweaks of the logo in

im
a

g
e

 V
I

50 • MXDJ.COM 5 • 2004

im
a

g
e

 V
II

im
a

g
e

 V
II

I

52 • MXDJ.COM 5 • 2004

general and I had my final logo as seen in

Image IX.

Objects with a Grain of Salt
There are several things about the Object

panel that can drive you crazy until you fig-

ure out what’s going on. Number one on

most people’s list is when you attempt to

change attributes on objects within a group.

I’ll start with text objects. When you have live

text, you can change the fill color and/or add

a stroke and change its color from any of the

usual spots – Swatches, Mixer, Tints, or Object

panels, or the color wells in the Tools menu.

Nothing new here. But if you convert the text

to paths you’ll notice that all indicators show

a fill and stroke of none, and you can’t seem

to change the colors at all. That’s due to the

text characters being in a group, and in some

letters, compound paths (o, e, a, P, Q, and so

on). In order to change the color, you have to

change the way you think about changing

color. First you have to burrow down into the

group until you reach the lowest common

denominator. The quickest way is to use the

Edit>Subselect command. Depending on

the situation, one or two applications of this

command will fill the panels with your color

options. The easiest way to Subselect objects

in a group is to create a keyboard shortcut. I

use Cmd/Ctrl+Opt/Alt+X; you can make it

anything you want – there is no default

shortcut.

“Normal”grouped objects work in the

same manner as with text. The first time

you look in the Object panel, you’ll see

“Group”as the Property area’s first listing,

with Contents listed beneath. Double-click

Contents to Subselect the objects within

the group, and the number of objects will

be listed, with an entry for whatever Stroke

and Fill is applied. If your items have the

same stroke and fill, you can make a

change to them all at this point. However, if

you have multiple objects that have differ-

ent color attributes, the stroke and fill wells

will have a dash in them, indicating multi-

plicity. To make changes, you must isolate

individual items. At this point, you could

hold down the Shift key and deselect items

you don’t want to change, but it’s almost

easier to use the Ungroup command in the

beginning and go straight to changing

attributes.

If you apply a stroke or fill to the

group, all objects will receive the new fill

color (or tiled fill, or patterned fill – what-

ever you choose), and gain the new

stroke. All this is in addition to

whatever strokes and fills the

objects have originally. It’s impor-

tant to keep in mind that you can

easily move strokes and fills up and

down in the Object panel – with

the exception of live text.

Summary
FreeHand’s Object panel is a

fascinating part of the program’s

operation. Spend some time on non-

critical drawings and text treatments

until you become proficient with all

the variables within the Properties

area and the Attributes area.

Acknowledgments
Many thanks to John Nosal,

Delores Highsmith, David Spells,

Peter Moody, and other engineers

at Macromedia for the technical

editing they provide.

Illustrator, designer, author, and

Team Macromedia member Ron

Rockwell lives and works with his

wife, Yvonne, in the Pocono

Mountains of Pennsylvania. He is

the author of FreeHand 10 f/x &

Design and co-authored Studio

MX Bible and the Digital

Photography Bible, and he is

MXDJ’s FreeHand editor. He has

Web sites at www.nidus-corp.com

and www.brainstormer.org.

guru@brainstormer.org

im
a

g
e

 I
X

HEADLINE
MAKING

Part 1 of this two-part article (MXDJ, Vol. 2,
issue 3) I showed how to invoke a Web
service for the purpose of validating user
input. Part 2 will delve a little deeper into
the ColdFusion MX language structure
specifically designed to handle XML result
sets such as those returned from a Web
service. The goal is to consume a Web
service that will return headline news
articles for a user-specified topic. When
finished you will be able to add a live user-
interactive newsfeed to your Web site.

IN

N

by richard gorremans

A WEB SERVICES EXAMPLE PART 2

54 • MXDJ.COM 5 • 2004

ES
G

SS
5 • 2004 MXDJ.COM • 55

56 • MXDJ.COM 5 • 2004

This article will cover:

• XmlParse(): Returns an XML

Document object

• XmlRoot property: Root element for

an XML Document object

• XmlName property: Element name

• XmlChildren[1]: Referencing the first

row in an array containing the child

nodes for a specified element

• XMLSearch(): Search routine that

returns an array of nodes that match a

provided XPath expression

• Error trapping with <cftry> and

<catch>

Choosing the Web Service
One resource for locating Web servic-

es is located at www.xmethods.com,

where you will find the Web service

(www.xmlme.com/WSCustNews.asmx?W

SDL) that will be used for this article. This

particular Web service returns a string

that is in an XML format; other Web ser-

vices may return different values. The

Axis engine that is built into ColdFusion

MX will deserialize these return values,

creating a data type you can use.

Testing the Web Service
Now that the decision has been made

as to what we want done and where to

find the Web service that will provide the

necessary information, the next step is

testing the Web service. Testing will

answer two questions.

1. Does the Web service work?

2. What is the Document Tree for the

returned result set?

The easiest way to perform these

tests is using the Dreamweaver MX

Components tab that is located on the

Application panel (see Image I). From this

tab you can add information on a Web

service, including a document tree. Click

on the + button to open the “Add using

WSDL” window (see Image II), enter the

URL for the WSDL file,

and click on the <OK>

button.

A new entry will be

added to the

Component tab of the

Application panel. Click

on the new entry to

view the document tree

for the WSDL file (see Image III).

Using the file administrator, open a

new document and drag-and-drop the

new Web service into the new document

as shown in Image IV.

You have now created the basic cod-

ing necessary for consuming the Web

service. The code sample created by

Dreamweaver MX shows one argument

being passed to the Web ser-

vice (topic), and the result set returned

from the Web service will be stored in the

aString variable. Replace “enter_value

_here” with the word “Sacramento”, which

will provide a topic for the Web service to

search on for the test.

The next step will be to add the cod-

ing to display the results returned from

the Web service (see Image V). For dis-

playing the results the XmlParse() func-

tion and <CFDUMP> tag are used.

XmlParse() is a new function that accepts

XML code as a string and returns an XML

Document object that represents the var-

ious XML elements contained in the doc-

ument. Image VI shows the results of the

<CFDUMP>.

The User Interface
Now that the Web service has been

selected and tested, the next step is to

create an interface where the user can

enter a topic of his or her choice and dis-

play the resulting headlines. The following

list is a very simplified view of the desired

process flow for the user interface.

1. Display entry field for user to enter

topic.

2. Invoke Web service, passing user input

as an argument and using a default

value for topic if one is not provided.

3. Display the result set if there are no

errors.

4. Display a message if there is an error.

The single most important variable in

the completed form will be the topic

im
a

g
e

 I

im
a

g
e

 I
I

im
a

g
e

 I
II

im
a

g
e

 I
V

being passed to the Web service as an

argument. A default parameter, sTopic,

will be created and a blank value

assigned. This variable will control when

the <CFINVOKE> tag is executed. The

code will be executed only if sTopic has a

value.

Another parameter will be the num-

ber of articles returned by the Web ser-

vice, defaulting to zero. If the Web service

returns a result set, this variable will be

populated with a count of the number of

headlines received.

<CFPARAM NAME="sTopic" DEFAULT="" />

<CFPARAM NAME="xCount" DEFAULT=0 />

With the default values out of the way

the next step is to create the GUI. This will

consist of a title, one label, an input field

for the topic, and a submit button. This

will be a rollover form so the

CGI.SCRIPT_NAME variable is used to

force the page to call itself on post (see

Code I). Image VII shows the user input

form for topic.

Consuming a Web service, just like

accessing a database, should be treated

as if there is a good chance the service

will be unavailable, the return results are

corrupted, or there are no results

returned. With a database error you typi-

cally receive an error code that can be

responded to. When you attempt to con-

sume a Web service, the errors will vary

and may be hard to account for. These

potential problems are easily dealt with

by placing the <CFINVOKE> code inside a

<CFTRY>.

The entire code segment is placed

inside a conditional statement that pre-

vents the code from being executed

unless the form has been submitted and

a topic has been provided by the user

(see Code II).

In Code II new properties (XmlRoot,

XmlName, XmlChildren) and the

XMLSearch() function have been intro-

duced. The coding combination ensures

that if the provider of the Web service

changes the root or child element the

program still has a good chance of

retrieving the desired information with-

out any modifications.

<cfset xRoot = MyXml.Xmlroot>

Retrieves information about the root ele-

ment.

<cfset bNode = xRoot.XmlName>

Retrieves the name of the root element.

In this case it is "moreovernews" (see

Image VI).

<cfset cNode =

xRoot.XmlChildren[1].XmlName>

Retrieves the name of the first child ele-

ment. In this case it is “article” (see Image

VI).

The combined results of these three

<CFSET> calls provide the second param-

eter needed for the XMLSearch() func-

tion. This function will return an array

containing the headlines received from

the Web service.

The next line (<cfset xCount =

arraylen(myNewsFeed)>) returns a count

of the number of elements (headlines)

the XMLSearch() function found. This

count will be used for a looping routine

to display the result set and controlling

whether or not the results code segment

is executed.

The next step is to display the head-

lines to the user. The displaying of this

code will be determined by the value of

the xCount variable (see Code III). If the

Web service returns a result set the value

will be greater than zero and can be dis-

played (see Image VIII). A looping routine

will be used to iterate over the result set,

displaying the headline_text, source, and

harvest_time elements. The url element

will be used to create a hyperlink to view

the entire story in a separate window (see

Image VI).

Typically there are two types of prob-

lems with which a Web service will most

likely return an error.

1. A connection to the Web service can-

not be made.

2. The Web service does not know how

to deal with the information provided

as the argument (such as a topic

where no headlines are found).

To handle these problems a <cfelseif>

condition will be added to the code that

displays the result set (see Image VIII). Code

IV verifies that the form has been submit-

ted and a topic was provided, but the

xCount is equal to zero. If either of these

problems are encountered a message will

be displayed to the user (See Image IX).

5 • 2004 MXDJ.COM • 57

im
a

g
e

 V

im
a

g
e

 V
I

im
a

g
e

 V
II

Summary
Once you start working with the code

presented in this article you will find that

there are endless possibilities for creating

new types of dynamic user-interactive

Web pages. Companies such as

Amazon.com and eBay have already

started providing access to their engines

via Web services that will greatly shorten

development time. For example, with

minimal programming, you can create

fully operational e-commerce sites using

another company’s stock and their Web

services.

In my next article you’ll learn how to

shorten your development time even

more by taking this same Web service

and applying an XSLT style sheet. Once

it’s applied, you’ll find that your complet-

ed Web pages can be more dynamic and,

with a few simple conditional statements,

display the same information in an unlim-

ited number of formats.

For the past four years Richard

Gorremans has been working for

EDFUND, the nonprofit side of the

Student Aid Commission, located in

Rancho Cordova California. A senior

software engineer with over 13 years

in the business, he has been working

as a technical lead producing Web-

based products that enable borrowers,

lenders, and schools to view and

maintain student loan information via

the Web.

xbase@volcano.net

58 • MXDJ.COM 5 • 2004

im
a

g
e

 V
II

I

im
a

g
e

 I
X

c
o

d
e

 III
c

o
d

e
 IV

c
o

d
e

 I
c

o
d

e
 I

I

5 • 2004 MXDJ.COM • 59

<table border="0" width="600" align="center">

<tr>

<td colspan="2">

<h3>News Headlines - Coldfusion MX Example</h3>

<hr />

</td>

</tr>

<tr>

<td>

Enter Topic

</td>

<td>

<form name="formTopicSubmit"

action="#CGI.SCRIPT_NAME#" method="post">

<input name="sTopic"

value="#sTopic#"

width="50"

maxlength="254">

<input type="submit" name="tSubmitted"

value="Submit">

</form>

</td>

</tr>

</table>

<cfif isdefined("form.sTopic") and form.sTopic GT "">

<cfset sTopic = form.sTopic />

<cftry>

<cfinvoke

webservice="http://www.xmlme.com/WSCustNews.asmx?WSDL"

method="getCustomNews"

returnvariable="aString">

<cfinvokeargument name="topic" value="#sTopic#"/>

</cfinvoke>

<cfset MyXml = XmlParse(aString) />

<cfset xRoot = MyXml.Xmlroot>

<cfset bNode = xRoot.XmlName>

<cfset cNode = xRoot.XmlChildren[1].XmlName>

<cfset myNewsFeed = XMLSearch(MyXml, "/#bNode#/#cNode#")>

<cfset xCount = arraylen(myNewsFeed)>

<cfcatch>

<cfset xCount = 0>

</cfcatch>

</cftry>

</cfif>

<cfif xCount>

<table border="0" width="600" align="center">

<cfloop from="1" to="#arrayLen(myNewsFeed)#" index="i">

<cfoutput>

<tr>

<td colspan="2" bgcolor="##66FFFF">

#myNewsFeed[i].headline_text.xmltext#

</td>

</tr>

<tr>

<td>

Source:

#myNewsFeed[i].source.xmltext#

</td>

<td>

Date/Time:

#myNewsFeed[i].harvest_time.xmltext#

</td>

</tr>

<tr>

<td colspan="2">

<a href="#myNewsFeed[i].url.xmltext#"

target="_blank">

Click Here To Read Story

<hr />

</td>

</tr>

</cfoutput>

</cfloop>

</table>

<cfelseif isdefined("form.tSubmitted") and trim(sTopic) is not "">

<table border="0" width="600" align="center">

<tr>

<td align="center">

No Information Available For Topic Submitted

Or unable to connect to Web Service.

Please try again.

</td>

</tr>

</table>

</cfif>

60 • MXDJ.COM 5 • 2004

n this last article (for now) of a

series of articles on Xtra develop-

ment using Macromedia’s Open

Architecture, or MOA, I thought it’d

be nice to take a quick tour through

some of the little quirks, clues, shortcuts,

and hints I’ve accumulated over the

years. These are in no specific order other

than that I’ve tried to keep related items

together.

Director Isn’t Loading
My Xtra

First, make sure it really isn’t loading.

Unfortunately, in Director, there is no spe-

cific menu item that will show you all the

Xtras. In later versions of Director you can

type “put the xtralist” (without quotes) in

the message window and it will list all

Xtras loaded by Director. It’s not format-

ted for easy reading, but it is comprehen-

sive. Other than that, where your Xtra

appears depends on what kind of Xtra it

is. Scripting, or Lingo Xtras, show up

when you type “showxlib” in the message

window. In later versions of Director you

can find them in the third-party Xtras

button on the message window as well.

Sprite/Asset Xtras show up under the

Insert menu. Tool Xtras show up on the

Xtras menu, and Transition Xtras show up

in the transition list.

If you’ve verified that it’s really not

there, there are a couple of reasons why it

might not show up. First, it has to be in

the Xtras folder with a .X32 extension for

Windows, or the proper Type/Creator on

Mac with the proper resources. It’s okay if

it’s in a subfolder under the Xtras folder,

as Director searches all subfolders.

On Windows, the most common rea-

son is failure to include the .DEF file. If

you delete all the original source file ref-

erences from the skeleton template and

add in yours instead, it’s very easy to for-

get to add in the .DEF file from the WIN-

PROJ folder. No .DEF file = no loading of

Xtras.

If it’s not loading and Director is com-

plaining of a “Duplicate Xtra”, then you’re

most likely using a GUID that is already

used by another Xtra. Each Xtra must

have unique GUIDs, as discussed in an

earlier article.

Next, it’s possible that something in

your registration code is preventing it

from registering. Is there a check for a

particular resource or version of

Director? You should walk through the

code and see if there are any exits that

might apply.

Finally, is it statically linked to a

required external .DLL that it can't find?

Because if so, it won't load. A good way

to test this is to, on Windows, run

Microsoft's DEPENDS.EXE on the file

(DEPENDS.EXE comes with Visual Studio,

and checks all file dependencies, except

for those loaded dynamically at runtime).

You might be able to run it on the Xtra in

the Xtras folder, or you may have to put

the Xtra in the Director folder itself for

the test, depending on where you keep

your required .DLL and how you have it

structured. A similar problem can occur

on the Mac with weakly linked libs,

although I don't know of any tool, off-

hand, that is a Mac equivalent of

DEPENDS.EXE.

If you fixed the “problem” but it still

doesn’t load, it’s slightly possible that

Director got out of sync with the Xtra. To

improve startup time, Director queries

each Xtra for its registration information

and caches that information; if the cache

gets out of sync, it may think your Xtra is

unloadable even though it really is. In

that case, just delete the cache. The

cache file is DIRAPI.MCH and it’s safe to

delete (but if you're squeamish, just

rename it). Director will rebuild the file if

it's missing.

Director Crashes at the
Splash Screen

Director loads Xtras while the Director

splash screen is being displayed. As such,

a crash during the splash screen usually is

due to an errant Xtra. One obvious place

to check is your registration code – use

the debugger to walk through it. If it

seems clean, and you’ve got a scripting

Xtra, a little-known cause of crashes is an

improper message table. At least in earli-

er versions of Director (have not tried this

in MX+), a bad entry in the message table

will bring Director to a screeching halt. As

an example, I believe a line like the fol-

lowing would do it:

"myFunction *, object me, *"

or

"myFunction * object me, *"

I ran into this a number of years ago

when I had an Xtra with global com-

mands that I was converting to an object-

based model. The original declaration

was something like “* myFunction*”,

meaning that it was global (the first aster-

isk) and had no restrictions on the num-

ber of parameters (the second asterisk). I

went through and added “object me” to

all the commands but forgot to move the

asterisk. Thus it was a wildcard asterisk

followed by a specific variable declara-

tion. I do not recall at this point if there

was a comma between the asterisk and

the “object” keyword. Nevertheless, the

net result was that Director crashed big-

time; it was not in my C code as far as I

could tell, yet it was obviously a result of

my Xtra.

It wasn’t until after a lot of searching

and trying to recall exactly what I had

changed that I finally realized it was a

change in the message table, and even

xtras

MOA Tour

Macromedia Open Architecture quirks, clues, shortcuts, and hints

by tab julius

i

5 • 2004 MXDJ.COM • 61

then it took a while to track it down. I

mention it here because it’s easy to make

a typo in the message table that results in

a not-so-obvious bug that can take forev-

er to find.

The Debugger Isn’t Hitting
My Breakpoints

Make sure that you’re actually debug-

ging your Xtra. I like to compile directly

into the Xtras folder in order to minimize

any mistakes that might be caused by

moving files from the debug or release

folder out to somewhere else. If you work

on multiple versions of Director, or if your

Xtra was originally built for an older ver-

sion of Director, make sure your debug

settings are compiling it into the proper

folder (for your current version) and not

the old one.

My Xtra Loads, Except in
Shockwave

In order for an Xtra to load in

Shockwave, there needs to be a flag set

during registration that says the Xtra is

“Safe for Shockwave”. In other words, you

have to explicitly say that the Xtra is safe

for Shockwave by default an Xtra is con-

sidered not safe for Shockwave.

In Shockwave, you have access to

nearly every MOA function that you do

when running from a desktop. And you

certainly have full access to all of the

operating system functions that you nor-

mally would. Setting the flag doesn’t, in

and of itself, set any limitations; it just

tells Director that you swear you’ve taken

the necessary precautions to make it safe

for Director to load. Such precautions

include not retrieving information or files

from the user’s machine, or doing any tin-

kering with their system, at least not

without providing clear warning to the

user and giving him or her the opportu-

nity to opt out.

And remember, to load in Shockwave,

the Xtra has to be in the Shockwave Xtras

folder, not just the Director folder.

Shockwave has its own set of folders

where the Shockwave plugin is. An easy

way to find it is to simply search for the

file “TextXtra.x32” on your system, which

will pull up both your Director folder and

your Shockwave folder. On Windows, offi-

cially there's a registry entry to tell you

where it is, but usually you'll find it in

\Windows\System\Macromed\Shock

wave 8\Xtras” (note that it says

MACROMED, not MACROMEDIA (8 char

limitation). On the Mac, it will usually be

“/System Folder/Extensions/

Macromedia/Shockwave 8/Xtras”. Also

remember that any external .DLLs you

need will need to be there too.

Okay, on to some specific program-

ming topics...

Director Goes Through My
Function Fine, but Crashes
Upon Returning

Did you try to release one of the args

from the callPtr? Because that’s a no-no.

Director owns those args and expects to

release them later on. When you use

AccessArgByIndex, you’re not creating an

arg, you’re simply accessing an existing

one. As such, it’s not your responsibility

to release it.

How Do I Get a Pointer to a
Sprite or a Cast Member?

In MOA, to get something you want,

you usually have to walk the chain of

command, particularly when it comes to

casts, scores, and sprites. You can’t just

instantiate a sprite variable, you have to

work your way to it.

Start with IMoaDrPlayer, an interface

that it's helpful to just acquire in the

beginning and keep around. With

IMoaDrPlayer you can then get a pointer

to the active movie (or any of the movies

– you can call GetMovieCount() and

GetNthMovie() to walk through the

movie list, or just call GetActiveMovie() to

get the one playing at the time of the

call).

Then, with the movie, for which you

will have a pointer to as a IMoaDrMovie2

object, you can get at the casts and the

score. GetScoreAccess() will get you a

pointer to the score, and you can use that

IMoaDrScoreAccess pointer to get your

fingers on the sprites, frames, and what-

not. Or, if you want to wander through

the casts of a movie, use IMoaDrMovie2

to GetCastCount(), get a cast by name or

index, and then with the casts you can

get at the cast members.

Ultimately you can traverse the whole

tree and get at everything loaded in the

movie. You just can’t go directly to cast-

member x of cast y of movie z, although

that might be a nice feature to have.

I’m Getting Crashing Calling
My Xtra from Another
Thread

Xtras, through MOA, have the ability to

call back into Lingo, such as through

IMoaDrPlayer’s CallHandler() function,

which will call a handler in the active movie.

This works, because Director put every-

thing on hold while it called your Xtra, and

now you’re calling back into Director, a con-

dition Director allows via MOA. This is con-

sidered a synchronous call...Director called

your Xtra; you’re calling back into Director;

it’s a straight line (or loop?).

But if you’ve created a separate thread

that needs to call Director, or if you have a

window with a callback for an external

operating system function that needs to

notify Director when something happens,

you may run into a crash. This is because

Director doesn’t have an inkling that you

might call it, particularly under Internet

Explorer, and your call is wholly unexpected

– the equivalent of stopping at a random

house at a random time and ringing the

doorbell and just going in, rather than hav-

ing an invitation. Director might be able to

accommodate you, but it might not.

If it can’t, then you’re looking at a

potential crash. How do you get around

this? By using Director’s Push/Pop Xtra

“For those writing Xtras, protecting
your work is important, if that’s how you

make (or supplement) your living”

Tab Julius has been

writing software

since the mid-70s,

and now works for a

software firm devel-

oping medical imag-

ing applications,

although he still

does limited con-

sulting on the side.

tab@penworks.com

62 • MXDJ.COM 5 • 2004

context. Basically it works like this – at a

“normal” time, when running, when

you’ve been called from Director (perhaps

when you’re going to set up your thread

or your window with a callback), you ask

Director for a copy of the movie context

via IMoaDrMovieContext. Then, later, at

the time when you need to call asynchro-

nously into Director, you will need to

assert the context, thus making it safe for

your call. You do this via

PushXtraContext(), and when you’re done,

you would then call PopXtraContext().

Failure to do so, when using threads or

your own windows (on Windows), is ask-

ing for a crash. It may not happen right

away, but you will find that it may die

arbitrarily while calling Director if you

haven’t asserted the context.

My Xtras Make Windows,
but the Screen Doesn’t
Refresh When I Move Them

If your Xtra puts up a window, and if

you drag the title bar to move the win-

dow and Director leaves a trail of win-

dows behind, well, that’s because Director

doesn’t know that you opened a window.

Yes, seriously, you have to tell Director

that you’ve got a window open. This is

because Director has optimized its stage

refresh code on the assumption that it is

the only window in its process that is

open. If you’re going to open a window,

you need to tell Director about it. This is

done by wrapping it before and after

with calls to IMoaMmWndWin’s

WinPrepareDialogBox and

WinUnprepareDialogBox().

On the Mac, there’s a similar issue

with dialog boxes, resolved in a similar

manner via IMoaMmWndMac's

MacPrepareModalDialog() and

MacUnprepareModalDialog().

I Want to Sell My Xtra –
How Can I Protect It?

This is a much more common ques-

tion than one might think. For those writ-

ing Xtras, protecting your work is impor-

tant, if that’s how you make (or supple-

ment) your living.

There are commercial tools out there

for limiting code use, but typically they’re

more for major product manufacturers

(like Macromedia) rather than Joe or Jane

Developer. Most commonly it’s some kind

of a serial number system. The Xtra won’t

work (or will have limited functionality)

without a serial number or similar regis-

tration code.

What restrictions you put on it

depends on you and what your Xtra does.

For instance, many developers like to

make their Xtra functional in authoring

mode, but to run in a projector or

Shockwave requires a serial number. This

scheme is good because it allows users to

try the Xtra in Director’s authoring mode

and get used to it and make sure it meets

their needs before purchasing it. Usually

they don’t buy unless they’re ready and

return rates are very low. The drawback is

the inevitable last-minute-ohmygosh-I-

need-it-now-we’re-shipping-tomorrow

emergency order. But it’s a system that

works quite well, usually. It won’t work so

well for tool-Xtras or authoring-only Xtras.

Another scheme, if appropriate, is to

have an authoring version of the Xtra and

a runtime version. The runtime one can

be shipped and distributed, but it can't

be reused for authoring by someone else.

The authoring version has the purchaser’s

name in big lights and is not to be redis-

tributed. This is nice because it keeps seri-

al numbers from being distributed in .DIR

files, but runs the risk of the authoring

version being accidentally distributed

and it doesn’t address the issue of try-

before-you-buy.

Regardless of which approach you

take, you can address the protection by

checking for authorization either in your

registration code, in your individual func-

tions, or in your handling of the ::Call

function. It is there that you can decide to

allow all, some, or no functionality based

on whatever criteria you want to set. A

call to IMoaAppInfo::GetInfo() will get you

runtime information such as the runMode

(whether you’re in authoring or in a pro-

jector). Note that some of the info that

GetInfo supplies, such as a serial number

and even a user name and organization

name, aren’t available at runtime (in a

projector), only at authoring time.

You will then need to come up with a

serial number algorithm such that (1) no

two serial numbers are alike; and (2) you

can verify it’s a valid serial number. You

will then need to write a program to gen-

erate such numbers, and one to analyze a

number and determine if it’s valid.

There is no recommended way to

write these. Everyone tries for a tech-

nique that builds in as much protection

as possible. You could simply make a

unique serial number (by building on

date/time and other information), or you

could tie it to the user’s name or compa-

ny by making them enter their name

along with the number for verification.

To see if a submitted number, or num-

ber and name, is valid you would submit

it to a series of tests. These would be the

reverse of how you generated the num-

ber. Besides just coming up with unique

information, you might then want to cre-

ate a checksum for the number and put it

in the number somewhere. Checksums

are numbers calculated off of other num-

bers. Your credit card number has a

checksum (usually just a single check

digit) that acts as a quick test as to

whether or not the rest of the number is

correct. For instance, in MasterCard #

5431 2345 6789 0123, the last digit “3”

might be calculated from the first 15. If

the first 15 ought to come up with a 7,

after running through whatever the

MasterCard check formula is, but the sub-

mitted number is 3, then it’s an immedi-

ate indication that the number is invalid

for some reason.

You can use the same approach in

your serial numbers – but they can be

much more complex. Registration codes

with letters in them, like “F2aBgADC-

33qrUz”, usually decode the letters into

numbers, and go from there. Also, parts

of the code can be shifted around, scram-

bled, so ultimately it would be very hard

to make a “fake” serial number that would

satisfy all the conditions of unscrambling,

and check digits, letter conversions, and

so on.

Your Xtra would not need to contain a

list of all possible serial numbers, it would

merely need to have the algorithm to test

a provided serial number. If a provided

serial number passes all your tests, then

you can consider it valid!

Final Question
Will there be more articles on Xtras

development?

Maybe, but not immediately. We’re

going to move into some advanced

Director development for a while. Look

forward to some interesting articles on

internationalizing your product to run in

multiple languages!

Until then, enjoy!

64 • MXDJ.COM 5 • 2004

5 • 2004 MXDJ.COM • 65

Tabs combine organization and navi-

gation. They indicate to the user that the

current interface provides access to a

related set of concepts. For example, your

project may require a Preferences win-

dow. You could provide one tab for each

theme that your preferences need to

cover. When the user clicks on a tab, the

appropriate screen will appear. Each

screen will contain its own input fields,

checkboxes, and other buttons.

This article shows you how to create a

set of tabs using customized bitmap

members and a simple generic behavior.

You’ll be learning about:

• Matte ink

• Testing commands in the Message

window

• Sprite channels and locZ

• Properties and variables

• Variable naming conventions

• Events

• Moving between markers

• Sending messages between sprites

• Behavior instances

• Lists

You can get a preview of the movie

that you are going to create at

http://nonlinear.openspark.com/

tutorials/tabs.dcr. You can find the com-

pleted movie at:

• Macintosh:

http://nonlinear.openspark.com/

tutorials/tabs.sit

• Windows:

http://nonlinear.openspark.com/

tutorials/tabs.zip

You can download a demo copy

of Director MX 2004 from

www.macromedia.com/go/try

_dmx2004

Proof of Concept
In the first half of this article, you’ll cre-

ate a very simple Tab behavior, just to show

that it’s possible. In the second half, you’ll

build a more elaborate behavior which will

merit a place in your code library.

Getting Started

Let's start by creating a simple movie

with three placeholder screens.

1. In the Score window, add markers

named "Marker 1", "Marker 2", and

"Marker 3" to frames 2, 32, and 62.

2. Double-click on the Script channel in

frame 28, and enter the following

script in the window that opens:

Create a behavior with the handler...

on exitFrame

go loop

end

3. Drop the new behavior member on

the Frame Script channel of the Score

in frames 58 and 88.

4. Using the rectangle tool from the Tool

Palette, draw a rectangular Shape

sprite on the Stage, in channel 1 and

starting in frame 1, and extending to

frame 28.

5. Select the new sprite in the Score win-

dow, and Alt-drag it (Windows) or

Option-drag it (Macintosh) to create

new sprites in frames 31 to 58 and

again in frames 61 to 88.

6. Using the Property Inspector at the

Sprite tab, set the color of these three

Shape sprites to red, green and blue.

This allows you to tell which section of

your movie is playing at any given

time.

7. Set the color of the background to

something other than white, so that

you can create a highlight lighter than

the stageColor. I chose color 200 from

the Mac System palette -

rgb("#006699").

This simple movie is enough for you

to test the tabs feature. If you want to

make it more like a Preferences window,

please feel free to add your own input

fields, buttons, and other controls at each

of the markers.

Creating the Bitmaps

Let’s start by creating a set of bitmap

members, one for each of the three tabs

that you are going to need. I created my

tab bitmap in the Paint Window, in eight

steps (see Image I):

1. Create the text.

2. Draw a box around it in a color lighter

than the stageColor - rgb("#0099CC")

in my case.

66 • MXDJ.COM 5 • 2004

im
a

g
e

 I
im

a
g

e
 I

I

im
a

g
e

 I
II

3. Draw a darker line down the right-

hand side – rgb(“#003366”).

4. Remove the top corners.

5. Drag the a 3x3 square in the top cor-

ners in and down to create a rounded

appearance.

6. Fill the box with the same color as the

stage.

7. Color the bottom of the box in the

same color, including the bottom-right

pixel.

8. Add a line to either side of the tab in

the same color I used in step 2, to

make the bitmap the same width as

the stage.

If you prefer, you can use icons

instead of text. When you are satisfied,

drag the bitmap member onto the Stage,

and set its ink to Matte using the

Property Inspector (see Image II).

Make two other bitmap members for

the other tabs. I simply created a copy of

the original and edited that (see Image

III).

Name each bitmap member with the

name of one of the markers in the Score

window. You'll see why we use marker

names for the bitmap members in a

moment.

Interacting with the Tabs

Place all three bitmaps on the Stage

using Matte ink. Notice that the tab in the

highest-numbered channel appears to be

in front of all the others. I’ll assume that

you have your ”Marker 1” tab in sprite 2,

“Marker 2” in sprite 3, and “Marker 3” in

sprite 4.

Run your movie, and type the follow-

ing command in the Message window:

sprite(2).locZ = 5

The tab in sprite 2 should now appear

in front of the others. Try again, this time

setting the locZ of sprite 3, and then

sprite 4 (see Image IV). What happens

when you try using sprite 2 again?

Normally, the order in which sprites

are drawn on the Stage depends on the

sprite channel they are in. A sprite in

channel 2 will appear in front of a sprite

in channel 1. When you move a sprite

around the stage, you change the value

of its locH and locV properties – its hori-

zontal and vertical location. The locZ

property affects the layer in which the

sprite appears.

As you have seen, you can force

Director to draw the sprites in a different

order. When you set the locZ of a sprite

to integer number, you tell Director to

treat it as if it were in the channel with

that number. You can thus give several

sprites the same locZ value. However,

Director will still distinguish between

sprites with the same locZ: it uses their

original sprite channel numbers to deter-

mine the order. Now that sprites 2, 3, and

4 all have a locZ of 5, sprite 4 will appear

in front of the others.

In order to make sprite 2 appear in

front, you have to set the locZ of the oth-

ers back to their original value. By

default, the locZ of a sprite is the same as

the number of its sprite channel.

How a Behavior Knows Which

Sprite It’s In

Lingo has a specific keyword for this

number: spriteNum. In a behavior, you

can declare spriteNum as a property, and

then use sprite(spriteNum) to refer to the

sprite to which the behavior is attached.

The property declaration must occur

before any reference to the property.

Traditionally, all the properties used by a

script are declared at the beginning.

Creating a Simple Behavior

Let’s make the tab sprites react to a

click. Select all three tab sprites, then

right-click (Windows) or Ctrl-click (Mac)

and select the Script item in the contex-

tual menu that opens. This will open the

Script window. Enter the code that

appears in Image V.

Note that this is a quick and dirty

piece of code. It uses hard-coded sprite

numbers. This is bad practice. If you move

your tab sprites to a different set of chan-

nels, your behavior will no longer work.

We'll see in a moment how to make the

code more generic.

When you click on the sprite, Director

sends it two messages: #mouseDown

and #mouseUp. In this case, you don’t

want to do anything when the user first

presses the mouse, so you ignore the

#mouseDown message. The on mouseUp

handler is the recipe that tells the sprite

what to do when the user releases the

mouse button over the tab sprite.

The me parameter is Director’s way of

referring to the behavior itself. When you

attach a behavior to a sprite, you create a

connection between that sprite and a

script member. When the Director play-

back engine first meets the sprite, it cre-

ates an instance of the script. Each

instance shares the same code, but is

stored in a separate place in the comput-

er's Random Access Memory. The me

parameter stores the address in memory

used for that particular instance on that

particular sprite.

The word “behavior” is often used

ambiguously. Sometimes it means “the

script itself”; sometimes it means “an

instance of the script in RAM”. In this arti-

cle, I use the words “script” and “instance”

explicitly where it is necessary to draw

the distinction between the two mean-

ings. We will be taking a closer look at me

in a moment.

Now run your movie and click on

each of the tabs in turn. They pop to the

front, just like the real thing. However,

the playback head stays at the same

marker. You need to add another line of

code:

tSprite=sprite(spriteNum)

go marker(tSprite.member.name)

The name of each tab bitmap mem-

ber is the same as the marker that you

want to display when the user clicks on

that tab sprite. You can therefore use the

5 • 2004 MXDJ.COM • 67

im
a

g
e

 I
V

im
a

g
e

 V

68 • MXDJ.COM 5 • 2004

name of the member to jump to the

appropriate marker.

Using Variables

Did you notice that you are now

using sprite(spriteNum) twice? This forces

Director to go back and consult its inter-

nal look-up tables a second time. It's

much more efficient to save the value for

the sprite in a variable, and use the vari-

able instead.

In Lingo, a variable is simply a con-

tainer; you can put any Lingo value into

it. You don’t have different variable types

for numbers, text strings, or sprite refer-

ences. In Image VI, I have used two vari-

ables: tSprite and tMarker. The “t” at the

beginning of the variable name stands

for “temporary”. We will create more per-

manent properties whose names will

begin with a "p", shortly. You don’t need

to use prefixes like this. Director doesn’t

understand prefixes. Humans do, howev-

er, and it can be very helpful when

debugging your code to use a variable

naming convention.

A temporary variable doesn’t need to

be declared. It's like a scrap of paper that

Director takes notes on while working

inside a particular handler. Once the han-

dler is finished, Director throws the scrap

away.

Why Use Matte Ink?

I told you earlier to use Matte ink for

your tab sprites. Let’s see why. Select all

your tab sprites and set them to copy

ink. Marker 3 covers the others with a

band of white. Try Background

Transparent ink.

The sprites now look good, but what

happens when you run the movie? Try

clicking on the “Marker 2” tab. The play-

back head jumps to Marker 3. Why?

Because although the white background

of the sprite is not visible, Director uses

the entire bounding box of the bitmap to

detect clicks.

With Matte ink when you click on a

sprite, Director ignores any white pixels

that are not enclosed by non-white pix-

els. It lets the click pass through to any

sprites in lower-numbered channels. Even

though the “Marker 3” sprite covers the

other sprites entirely, Director lets the

mouse events reach the lower-numbered

sprites in the area where the “Marker 3”

sprite is transparent.

Matte ink is the only ink that affects

the way mouse clicks are detected. Other

inks affect the way Director draws the

sprite.

Time Out

You now have all the code you need

to implement a Tab feature in a Director

project. If you are Lingo intolerant, you

can stop reading this article now.

However, the next time you need to use

tabs, you’ll have to rewrite your behavior

script using the appropriate hard-coded

sprite channel numbers. Wouldn’t it be

better to do a little more work now, so

that the next time you need to use tabs,

you don’t have to open the Script editor?

If you think so, read on.

Making the
Behavior Generic

To make the behavior generic, you

need to ensure that it works regardless of

where the tab sprites appear. That means

that the behavior has to be able to learn

where it is, and where the other sprites

with the same behavior are.

Custom Events

A sprite can tell which channel it is in

using the spriteNum property. But how

can one tab sprite know where the other

tab sprites are, so that it can move in

front? One technique would be to send a

message to all the other sprites, telling

them to reset their locZ values. The

sendAllSprites() command allows you to

do this.

When you click on a sprite, Director

automatically sends it a #mouseUp event,

which is intercepted by the on mouseUp

handler. You can create your own custom

events and match them up with custom

handlers with the same name.

Try this in your behavior script using

the code shown in Image VII. The on

mouseUp handler will now send a

#ResetLocZ event to all sprites, and the

on ResetLocZ handler knows what to do

with it.

First it prints the spriteNum of the

sprite that received the event in the

Message window, along with information

on where that sprite’s behavior is stored

in the computer’s memory

(the me parameter). Note

that the sprites receive the

message in order, the low-

est-numbered sprite first.

The value of locZ has no

effect on this order. Note

also that, although all the

sprites share the same

behavior script, the value

of each instance's

spriteNum property is dif-

ferent.

Second, the handler

resets the locZ of the sprite

to the same value as its

im
a

g
e

 V
II

im
a

g
e

 V
I

spriteNum, which is the bit we are inter-

ested in.

You now have only one hard-coded

value left in the behavior script: the value

5. What happens if you leave the script as

it is and move the sprites up one chan-

nel?

TTiipp:: Select the three tab sprites on the

Stage or in the Score and press the

Ctrl-Up arrow, or the Apple-Up arrow if

you are on Macintosh. Now run the

movie and click on the “Marker 2” tab.

The playback head jumps to Marker 2,

but the tab sprite does not appear in

front of the sprite in channel 5 (see

Image VIII).

Sharing Data with Other Behaviors

One way to avoid this issue would be

to set the locZ of the selected tab sprite

to the lastChannel + 1. This would move

it in front of all the other sprites.

However, if your application allowed the

user to drag and drop items, they might

pass behind the tab sprite, and this

would look odd. In my experience, it is

better to keep the tab sprites in low-

numbered channels.

There is another drawback with the

current technique: sendAllSprites() can

badly slow down your movie. In the cur-

rent case, this isn’t obvious. I have

encountered projects where one sprite

used sendAllSprites() to broadcast one

event, and the sprites that received the

event sent out other events, again using

sendAllSprites(), and so on. What looked

like a single line of code ended up in a

flood of messages that almost drowned

the machine. If used incorrectly,

SendAllSprites could become the Lingo

equivalent of the chain letter.

How can the behavior instances

determine which tab

sprite is in the high-

est-numbered chan-

nel so that they can

set the locZ of the

front-most sprite to a

higher value? The

solution that I pro-

pose also reduces the

use of

sendAllSprites() to a

single salvo: we'll use

a list.

Lingo Lists

In Lingo, a list is like

an address book: it

contains information

about where things

are. Just as an

address book does

not contain the peo-

ple it refers to, so a

list variable does not contain the data

itself. It contains the address where that

data can be found in the computer's

memory.

If you use two variables to refer to the

same list, and then change the contents

of one list, the contents of the other vari-

able will change too. Try it in the Message

window:

gList1 = []

put gList

-- []

gList2 = gList1

-- Change gList2...

gList2.add(#aValue)

-- ... and gList1 changes too:

put gList1

-- [#aValue]

Note: I use “g” as a prefix here because

variables created in the Message window

are global. Any script in any movie can

access and alter the value of a global vari-

able... so long as it is properly declared.

You’re now ready to use this feature in

your behavior. You'll find the final version

of the script in Image IX.

There are six new Lingo expressions

to learn about:

1. if ... then ... end if

2. listP

3. not

4. []

5. getLast()

6. call()

These are all explained in the Lingo

dictionary and the online Director help.

“[]” appears at the beginning of the

Dictionary, among all the other non-

alphabetical characters.

Basically, what happens now is this:

when the behavior instances are first cre-

ated, the property pTabList has no value

in any of the instances. The first time you

click on a tab sprite, that behavior

instance realizes that pTabList is not yet a

list. Obligingly, it creates a new, tempo-

rary list, and sends it out to all sprites on

the back of a custom #Tab_SetList event.

The custom event's name starts with

#Tab_, so the chances are that only the

Tab behavior will have a handler of that

name. Instances of other behaviors in

your movie will ignore it.

The on Tab_SetList handler in each

Tab behavior instance receives the list in

70 • MXDJ.COM 5 • 2004

im
a

g
e

 I
X

James Newton works for

OpenSpark Interactive

Ltd. The company spe-

cializes in designing multi-

media applications for

improving production

processes. His contribu-

tions to the Behavior

Library, and his articles on

Imaging Lingo, 3D mathe-

matics, LDMs, the

MultiUser Server and

other Director topics have

helped Lingo users

at all levels.

james.newton

@openspark.com

im
a

g
e

 V
II

I

5 • 2004 MXDJ.COM • 71

the aList parameter. The “a” prefix stands

for “attribute”, meaning that the value

was sent from somewhere else, not creat-

ed in the handler itself, like a temporary

variable. When the on Tab_SetList han-

dler is completed, the original tList vari-

able will still be held in the computer's

memory... just as long as it takes the ini-

tial on mouseUp handler to complete.

The on Tab_SetList handler in each

behavior instance does two things: it sets

its own pTabList property so that it refers

to the list, and it adds a reference to itself

to the list.

Each Tab behavior now knows about

all the other Tab behaviors: each behavior

has a pTabList property which stores all

the behavior's addresses, in the order of

their sprite channels. This means that the

last entry in the list refers to the behavior

on the sprite in the highest channel. Add

1 to the spriteNum of this last behavior,

and you get a locZ in front of all the Tab

sprites.

Instead of sending a message to all

sprites, you can now simply send a mes-

sage to the list of Tab behaviors.

Let’s run through that again.

• The behavior instances are all in differ-

ent places in the computer's memory.

The fact that each has a different value

of spriteNum proves this.

• All the behavior instances have their

own pTabList property, but by sleight

of code, all these different properties

refer to the same list.

• The contents of this unique list is a set

of variables, each of which refers to

one of the Tab behavior instances.

• Because of the way Director talks to

sprites, these instances are ordered by

spriteNum, so the last instance is

attached to the sprite in the highest-

numbered channel.

• You can use call() to send a message to

all the instances in a list.

In other words, the pTabList is like a

private club, where everyone knows

everyone. The sendAllSprites() command

is used just once to create the club.

Conclusion
You need to make one final tweak:

reverse the order of the tab sprites so that

the “Marker 1”tab appears in the highest-

numbered channel. That way, the correct tab

will be in front when you start your movie.

You now have a generic behavior that

can be used in any sprite channel. The

behavior in the download movie contains

a couple of changes for reasons of opti-

mization, and is much better comment-

ed. You may want to add it to your code

library.

It’s taken just 21 lines of code to make

a robust behavior. How could this behav-

ior be improved? Here's a brief shopping

list of possible enhancements:

• Create the tab members automatically

with a given text label and icon

• Use a single sprite

• Do more than just jumping to a given

marker

• Move the appropriate tab sprite to the

front if the user navigates to a marker

other than by clicking on a tab

• Add support for more than one group

of Tab sprites on a given page

Where to Go from Here
MeccaMedialight has made available

a widgets library containing open source

code for creating Tab and other controls,

via their LingoWorkshop site: www.

lingoworkshop.com/code/widgets3_lib_

tabs.php

72 • MXDJ.COM 5 • 2004

pparently since the dawn of

time, Director has had quite an

affinity for the processor and

its cycles. In fact, Director appears to like

the processor so much that when run-

ning, there is little to no free processor

time. In the old days, Director on the Mac

had CPUHogticks to determine an

amount of time to give back to the

processor, but nowadays that command

doesn’t exist and CPU hogging becomes

an issue for the following reasons:

• On laptops, hogging the processor will

result in 100% processor allocation,

which will result in a hot processor,

which will turn the fan and lessen bat-

tery life.

• On OS X, your whole system becomes

less snappy.

• Director does not play well with other

applications if it asks for all the remain-

ing processor power and may take

processor power away from other sub-

systems that the projector may access.

• Hogging the processor makes distrib-

uting Director utility applications unre-

alistic.

So, enough about the problems. Why

does it happen and how do we fix it?

From several conversations last centu-

ry with various Director engineers, I

learned several things. Among them, the

movie-level Idle handler is only called

when Director has nothing else to do or

has spare cycles. This means that at times

Director has spare cycles, cycles that could

be used by other applications. Also, if Idle

is called and completes, and there are

spare cycles left, Idle will be called again

and again until there are no spare cycles

present, thereby keeping the spare cycles

from being used by other processes. This

will happen whether you have put an Idle

handler in your movie or not. Following

this logic, it would seem that if we were

able to trap this Idle event in an Idle han-

dler and sleep Director for an appropriate-

ly small period, then Director would not

be gobbling cycles. Since it wasn't using

them anyway this would free up the

processor for other tasks and still allow

Director to operate as fast as it needs to!

Now I know you’re saying “Oh, that

sounds lovely Sparky, how do you sug-

gest we do this?” And this, gentle reader,

is the good part.

From a conversation with Warren

Ockrassa about his love of undocument-

ed Xtras, I started playing around with

one of those Xtras. In it I found a sleep

command. Amply caffeinated, an aha

moment happened and I decided to see

what would happen if Director slept for 1

millisecond when Idle was called.

That was it.

This simple handler stopped Director

from hogging the processor.

On Idle

sleep 1

end

If you run or produce Director soft-

ware for OS X, this has profound effects,

all of them good. Director running on

Windows also exhibits better processor

usage but the benefits are less pro-

nounced.

The trick is that whether running a

Director movie on the stage or in a MIAW,

there is only a limited amount of idle or

free time that Director can use as an

opportunity to call Idle. This means that

only one of these Idle handlers is needed

for any Director session. More than one

Idle handler split between the stage and

sleep

Ending CPU Hogging

Sleep that offers work
by alex zavatone

a

im
a

g
e

 I

“At times Director has
spare cycles, cycles
that could be used
by other applications”

5 • 2004 MXDJ.COM • 73

any running MIAWs is not needed.

Now, the tricky part is that this afore

unmentioned Xtra, which comes from

Macromedia, has different names in dif-

ferent versions and platforms of Director.

Great.

It started out as the “UI Helper Xtra”,

made to support Director’s Export to Java

functionality in D7. In Director MX, it was

renamed the “Watcher Helper Xtra”. On

Windows, it was originally called

“JavaUIHelper.x32”. On certain versions of

Director for Windows (8, 8.5), this xtra

must be installed off of the goodies or

xtra partners folder on the Director install

CD. As far as I know, it is called

“WatcherHelper.x32” on DMX for

Windows.

In any case, you can always go to the

message window and type the following

line to see if the xtra you suspect has the

sleep method in it.

put interface(xtra "the name of the

xtra I suspect is the one I care

about")

Once you have identified the xtra for

the version of Director you are using, you

must manually include the xtra in the

movie xtras list for use within a projector

since it is not an asset xtra.

Now make your projector, launch it,

and run a processor monitoring app.

You'll be pleasantly surprised. Image I

provides a snapshot of a DMX projector

playing nice with other apps on my 1G Ti

PB.

A projector using only 11% of the

CPU is a joyous site to see.

Think we’re done yet?

There are caveats though and, luckily,

solutions. Colin Holgate mentioned that

this technique is great unless your projec-

tor is set to “not animate in the back-

ground.” Sure enough, when I tested it a

no animate projector on OS X started eat-

ing up all the processor power when put

into the background. Colin's solution to

this was to use a regular "animate in

background" projector and to trap the

activateApplication and deactivate-

Application handlers. Within those han-

dlers, set a global used for the sleep

value to 1 on activateApplication and to

a higher number on deactivate-

Application. This technique combined

with a regular animate in background

projector allows the projector free up

even more time when in the background.

Requested since before the dawn of

time, the end to CPU hogging in author-

ing and projectors is here.

Enjoy.

• • •
Thanks for contributing to this discov-

ery/technique go to Warren Ockrassa for

general troublemaking and research; Joe

Siponen (pointing out the xtra name dif-

ferences between versions); Troy Rollins

(MIAW experiments); and Colin Holgate

(by default). Members of a number of

Director-oriented mailing lists also

helped flesh out this technique.

Alex (Zav) Zavatone previously worked

on Macromedia’s Director/Shockwave

Engineering team performing QA for

Lingo sometime last century. Between

then and now, he has done stuff and

even performed things (product design,

architecture, and implementation).

Marooned in San Francisco and when

not being sarcastic, he has been spotted

being formal, stuffy, and consulting for

clients whenever able.

zavpublic-at-mac.com

Advertising Index

Advertiser URL Phone Page

activePDF www.activepdf.com 15

ColdFusion Developer's Journalwww.sys-con.com/cfdj/subscription.cfm888-303-5282 53

CFDynamics www.cfdynamics.com 866-CFDYNAMICS 9

Cfun '04 www.cfconf.org/cfun-04 75

del Padre Visual Productions www.delpadre.com 74

Edge Web Hosting www.edgewebhosting.net/cfdj 21

HostMySite.com www.hostmysite.com/mxdj 877-248-4678 41

Information Storage + Security Journalwww.issjournal.com 888-303-5282 63

Interakt www.interaktonline.com 6

IT Solutions Guide www.sys-con.com/it 201-802-3021 58

Macromedia www.macromedia.com 2--3, 76

MX Developer's Journal www.sys-con.com/mx/subscription.cfm 888-303-5282 51

Seapine Software www.seapine.com 888-683-6456 11

Serverside www.serverside.net 888-682-2544 27

SYS-CON e-newsletters www.sys-con.com 888-303-5282 71

SYS-CON Publications www.sys-con.com/2001/sub.cfm 888-303-5282 69

SYS-CON Reprints www.sys-con.com 201-802-3026 45

Webcore Technologies www.webcoretech.com 877-WCT-HOST 33

74 • MXDJ.COM 5 • 2004

va
n

g
u

a
rd

el Padre Visual Productions has recently complet-

ed the design of a Macromedia Flash MX

Professional 2004–based Digital Business Card for

aerospace and defense contractor BAE Systems. DVP design-

ers set out to design the presentation entirely in Flash MX

Professional 2004 and Alias Maya 5.0. An interactive inter-

face console allows the user to choose from three forms of

content: a three-minute video overview of the SSE group, a

Flash slideshow-type presentation including additional

information about the parent company, and a very dynamic

high-tech contact screen. Each link initiates a “fly in” anima-

tion from the interface console position to the content area,

which is three large video monitors on the far

wall of the Mission Control environment.

www.delpadre.com

Dream Out Loud

d

